operators.py 135.3 KB
Newer Older
W
wangxinxin08 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Q
qingqing01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# function:
#    operators to process sample,
#    eg: decode/resize/crop image

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division

try:
    from collections.abc import Sequence
except Exception:
    from collections import Sequence

W
wangxinxin08 已提交
28
from numbers import Number, Integral
Q
qingqing01 已提交
29 30 31 32 33 34

import uuid
import random
import math
import numpy as np
import os
W
wangxinxin08 已提交
35
import copy
G
George Ni 已提交
36
import logging
Q
qingqing01 已提交
37
import cv2
M
Manuel Garcia 已提交
38
from PIL import Image, ImageDraw
W
Wenyu 已提交
39 40 41
import pickle
import threading
MUTEX = threading.Lock()
Q
qingqing01 已提交
42

43
import paddle
Q
qingqing01 已提交
44
from ppdet.core.workspace import serializable
45
from ..reader import Compose
Q
qingqing01 已提交
46 47 48 49 50

from .op_helper import (satisfy_sample_constraint, filter_and_process,
                        generate_sample_bbox, clip_bbox, data_anchor_sampling,
                        satisfy_sample_constraint_coverage, crop_image_sampling,
                        generate_sample_bbox_square, bbox_area_sampling,
51
                        is_poly, get_border)
Q
qingqing01 已提交
52 53

from ppdet.utils.logger import setup_logger
W
wangguanzhong 已提交
54
from ppdet.modeling.keypoint_utils import get_affine_transform, affine_transform
Q
qingqing01 已提交
55 56
logger = setup_logger(__name__)

W
wangxinxin08 已提交
57
registered_ops = []
Q
qingqing01 已提交
58

W
wangxinxin08 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84

def register_op(cls):
    registered_ops.append(cls.__name__)
    if not hasattr(BaseOperator, cls.__name__):
        setattr(BaseOperator, cls.__name__, cls)
    else:
        raise KeyError("The {} class has been registered.".format(cls.__name__))
    return serializable(cls)


class BboxError(ValueError):
    pass


class ImageError(ValueError):
    pass


class BaseOperator(object):
    def __init__(self, name=None):
        if name is None:
            name = self.__class__.__name__
        self._id = name + '_' + str(uuid.uuid4())[-6:]

    def apply(self, sample, context=None):
        """ Process a sample.
Q
qingqing01 已提交
85
        Args:
W
wangxinxin08 已提交
86 87 88 89
            sample (dict): a dict of sample, eg: {'image':xx, 'label': xxx}
            context (dict): info about this sample processing
        Returns:
            result (dict): a processed sample
Q
qingqing01 已提交
90
        """
W
wangxinxin08 已提交
91
        return sample
Q
qingqing01 已提交
92

W
wangxinxin08 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
    def __call__(self, sample, context=None):
        """ Process a sample.
        Args:
            sample (dict): a dict of sample, eg: {'image':xx, 'label': xxx}
            context (dict): info about this sample processing
        Returns:
            result (dict): a processed sample
        """
        if isinstance(sample, Sequence):
            for i in range(len(sample)):
                sample[i] = self.apply(sample[i], context)
        else:
            sample = self.apply(sample, context)
        return sample

    def __str__(self):
        return str(self._id)


@register_op
class Decode(BaseOperator):
G
George Ni 已提交
114
    def __init__(self):
W
wangxinxin08 已提交
115 116 117
        """ Transform the image data to numpy format following the rgb format
        """
        super(Decode, self).__init__()
Q
qingqing01 已提交
118

W
wangxinxin08 已提交
119
    def apply(self, sample, context=None):
Q
qingqing01 已提交
120 121 122 123
        """ load image if 'im_file' field is not empty but 'image' is"""
        if 'image' not in sample:
            with open(sample['im_file'], 'rb') as f:
                sample['image'] = f.read()
W
wangxinxin08 已提交
124
            sample.pop('im_file')
Q
qingqing01 已提交
125

126 127 128 129 130 131 132 133 134
        try:
            im = sample['image']
            data = np.frombuffer(im, dtype='uint8')
            im = cv2.imdecode(data, 1)  # BGR mode, but need RGB mode
            if 'keep_ori_im' in sample and sample['keep_ori_im']:
                sample['ori_image'] = im
            im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
        except:
            im = sample['image']
W
wangxinxin08 已提交
135

Q
qingqing01 已提交
136 137 138 139
        sample['image'] = im
        if 'h' not in sample:
            sample['h'] = im.shape[0]
        elif sample['h'] != im.shape[0]:
140
            logger.warning(
Q
qingqing01 已提交
141 142 143 144 145 146 147
                "The actual image height: {} is not equal to the "
                "height: {} in annotation, and update sample['h'] by actual "
                "image height.".format(im.shape[0], sample['h']))
            sample['h'] = im.shape[0]
        if 'w' not in sample:
            sample['w'] = im.shape[1]
        elif sample['w'] != im.shape[1]:
148
            logger.warning(
Q
qingqing01 已提交
149 150 151 152 153
                "The actual image width: {} is not equal to the "
                "width: {} in annotation, and update sample['w'] by actual "
                "image width.".format(im.shape[1], sample['w']))
            sample['w'] = im.shape[1]

W
wangxinxin08 已提交
154 155
        sample['im_shape'] = np.array(im.shape[:2], dtype=np.float32)
        sample['scale_factor'] = np.array([1., 1.], dtype=np.float32)
Q
qingqing01 已提交
156 157 158
        return sample


W
Wenyu 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
def _make_dirs(dirname):
    try:
        from pathlib import Path
    except ImportError:
        from pathlib2 import Path
    Path(dirname).mkdir(exist_ok=True)


@register_op
class DecodeCache(BaseOperator):
    def __init__(self, cache_root=None):
        '''decode image and caching
        '''
        super(DecodeCache, self).__init__()

174
        self.use_cache = False if cache_root is None else True
W
Wenyu 已提交
175 176 177 178 179 180 181
        self.cache_root = cache_root

        if cache_root is not None:
            _make_dirs(cache_root)

    def apply(self, sample, context=None):

182 183
        if self.use_cache and os.path.exists(
                self.cache_path(self.cache_root, sample['im_file'])):
W
Wenyu 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
            path = self.cache_path(self.cache_root, sample['im_file'])
            im = self.load(path)

        else:
            if 'image' not in sample:
                with open(sample['im_file'], 'rb') as f:
                    sample['image'] = f.read()

            im = sample['image']
            data = np.frombuffer(im, dtype='uint8')
            im = cv2.imdecode(data, 1)  # BGR mode, but need RGB mode
            if 'keep_ori_im' in sample and sample['keep_ori_im']:
                sample['ori_image'] = im
            im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)

199 200
            if self.use_cache and not os.path.exists(
                    self.cache_path(self.cache_root, sample['im_file'])):
W
Wenyu 已提交
201 202 203 204 205 206 207 208 209 210
                path = self.cache_path(self.cache_root, sample['im_file'])
                self.dump(im, path)

        sample['image'] = im
        sample['h'] = im.shape[0]
        sample['w'] = im.shape[1]

        sample['im_shape'] = np.array(im.shape[:2], dtype=np.float32)
        sample['scale_factor'] = np.array([1., 1.], dtype=np.float32)

W
Wenyu 已提交
211 212
        sample.pop('im_file')

W
Wenyu 已提交
213 214 215 216 217 218 219 220 221 222
        return sample

    @staticmethod
    def cache_path(dir_oot, im_file):
        return os.path.join(dir_oot, os.path.basename(im_file) + '.pkl')

    @staticmethod
    def load(path):
        with open(path, 'rb') as f:
            im = pickle.load(f)
223
        return im
W
Wenyu 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237

    @staticmethod
    def dump(obj, path):
        MUTEX.acquire()
        try:
            with open(path, 'wb') as f:
                pickle.dump(obj, f)

        except Exception as e:
            logger.warning('dump {} occurs exception {}'.format(path, str(e)))

        finally:
            MUTEX.release()

238

239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
@register_op
class SniperDecodeCrop(BaseOperator):
    def __init__(self):
        super(SniperDecodeCrop, self).__init__()

    def __call__(self, sample, context=None):
        if 'image' not in sample:
            with open(sample['im_file'], 'rb') as f:
                sample['image'] = f.read()
            sample.pop('im_file')

        im = sample['image']
        data = np.frombuffer(im, dtype='uint8')
        im = cv2.imdecode(data, cv2.IMREAD_COLOR)  # BGR mode, but need RGB mode
        if 'keep_ori_im' in sample and sample['keep_ori_im']:
            sample['ori_image'] = im
        im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)

        chip = sample['chip']
        x1, y1, x2, y2 = [int(xi) for xi in chip]
259 260
        im = im[max(y1, 0):min(y2, im.shape[0]), max(x1, 0):min(x2, im.shape[
            1]), :]
261 262 263 264 265 266 267 268 269 270 271 272 273

        sample['image'] = im
        h = im.shape[0]
        w = im.shape[1]
        # sample['im_info'] = [h, w, 1.0]
        sample['h'] = h
        sample['w'] = w

        sample['im_shape'] = np.array(im.shape[:2], dtype=np.float32)
        sample['scale_factor'] = np.array([1., 1.], dtype=np.float32)
        return sample


Q
qingqing01 已提交
274
@register_op
W
wangxinxin08 已提交
275
class Permute(BaseOperator):
G
George Ni 已提交
276
    def __init__(self):
Q
qingqing01 已提交
277
        """
W
wangxinxin08 已提交
278
        Change the channel to be (C, H, W)
Q
qingqing01 已提交
279
        """
W
wangxinxin08 已提交
280
        super(Permute, self).__init__()
Q
qingqing01 已提交
281

W
wangxinxin08 已提交
282
    def apply(self, sample, context=None):
Q
qingqing01 已提交
283
        im = sample['image']
W
wangxinxin08 已提交
284 285
        im = im.transpose((2, 0, 1))
        sample['image'] = im
Q
qingqing01 已提交
286 287 288 289
        return sample


@register_op
W
wangxinxin08 已提交
290 291
class Lighting(BaseOperator):
    """
292
    Lighting the image by eigenvalues and eigenvectors
W
wangxinxin08 已提交
293 294 295 296 297
    Args:
        eigval (list): eigenvalues
        eigvec (list): eigenvectors
        alphastd (float): random weight of lighting, 0.1 by default
    """
Q
qingqing01 已提交
298

W
wangxinxin08 已提交
299 300 301 302 303
    def __init__(self, eigval, eigvec, alphastd=0.1):
        super(Lighting, self).__init__()
        self.alphastd = alphastd
        self.eigval = np.array(eigval).astype('float32')
        self.eigvec = np.array(eigvec).astype('float32')
Q
qingqing01 已提交
304

W
wangxinxin08 已提交
305 306 307
    def apply(self, sample, context=None):
        alpha = np.random.normal(scale=self.alphastd, size=(3, ))
        sample['image'] += np.dot(self.eigvec, self.eigval * alpha)
Q
qingqing01 已提交
308 309 310 311
        return sample


@register_op
W
wangxinxin08 已提交
312 313
class RandomErasingImage(BaseOperator):
    def __init__(self, prob=0.5, lower=0.02, higher=0.4, aspect_ratio=0.3):
Q
qingqing01 已提交
314
        """
W
wangxinxin08 已提交
315
        Random Erasing Data Augmentation, see https://arxiv.org/abs/1708.04896
Q
qingqing01 已提交
316
        Args:
W
wangxinxin08 已提交
317 318
            prob (float): probability to carry out random erasing
            lower (float): lower limit of the erasing area ratio
G
George Ni 已提交
319
            higher (float): upper limit of the erasing area ratio
W
wangxinxin08 已提交
320
            aspect_ratio (float): aspect ratio of the erasing region
Q
qingqing01 已提交
321
        """
W
wangxinxin08 已提交
322
        super(RandomErasingImage, self).__init__()
Q
qingqing01 已提交
323
        self.prob = prob
W
wangxinxin08 已提交
324
        self.lower = lower
325
        self.higher = higher
W
wangxinxin08 已提交
326
        self.aspect_ratio = aspect_ratio
Q
qingqing01 已提交
327

F
Feng Ni 已提交
328
    def apply(self, sample, context=None):
W
wangxinxin08 已提交
329 330 331 332 333 334
        gt_bbox = sample['gt_bbox']
        im = sample['image']
        if not isinstance(im, np.ndarray):
            raise TypeError("{}: image is not a numpy array.".format(self))
        if len(im.shape) != 3:
            raise ImageError("{}: image is not 3-dimensional.".format(self))
Q
qingqing01 已提交
335

W
wangxinxin08 已提交
336 337 338
        for idx in range(gt_bbox.shape[0]):
            if self.prob <= np.random.rand():
                continue
Q
qingqing01 已提交
339

W
wangxinxin08 已提交
340
            x1, y1, x2, y2 = gt_bbox[idx, :]
341 342
            w_bbox = x2 - x1
            h_bbox = y2 - y1
W
wangxinxin08 已提交
343
            area = w_bbox * h_bbox
Q
qingqing01 已提交
344

W
wangxinxin08 已提交
345 346 347
            target_area = random.uniform(self.lower, self.higher) * area
            aspect_ratio = random.uniform(self.aspect_ratio,
                                          1 / self.aspect_ratio)
Q
qingqing01 已提交
348

W
wangxinxin08 已提交
349 350
            h = int(round(math.sqrt(target_area * aspect_ratio)))
            w = int(round(math.sqrt(target_area / aspect_ratio)))
Q
qingqing01 已提交
351

W
wangxinxin08 已提交
352 353 354 355 356 357
            if w < w_bbox and h < h_bbox:
                off_y1 = random.randint(0, int(h_bbox - h))
                off_x1 = random.randint(0, int(w_bbox - w))
                im[int(y1 + off_y1):int(y1 + off_y1 + h), int(x1 + off_x1):int(
                    x1 + off_x1 + w), :] = 0
        sample['image'] = im
Q
qingqing01 已提交
358 359 360 361
        return sample


@register_op
W
wangxinxin08 已提交
362
class NormalizeImage(BaseOperator):
363 364 365 366 367
    def __init__(self,
                 mean=[0.485, 0.456, 0.406],
                 std=[0.229, 0.224, 0.225],
                 is_scale=True,
                 norm_type='mean_std'):
Q
qingqing01 已提交
368 369
        """
        Args:
W
wangxinxin08 已提交
370 371
            mean (list): the pixel mean
            std (list): the pixel variance
372 373
            is_scale (bool): scale the pixel to [0,1]
            norm_type (str): type in ['mean_std', 'none']
Q
qingqing01 已提交
374
        """
W
wangxinxin08 已提交
375 376 377 378
        super(NormalizeImage, self).__init__()
        self.mean = mean
        self.std = std
        self.is_scale = is_scale
379
        self.norm_type = norm_type
W
wangxinxin08 已提交
380
        if not (isinstance(self.mean, list) and isinstance(self.std, list) and
381 382
                isinstance(self.is_scale, bool) and
                self.norm_type in ['mean_std', 'none']):
W
wangxinxin08 已提交
383 384 385 386
            raise TypeError("{}: input type is invalid.".format(self))
        from functools import reduce
        if reduce(lambda x, y: x * y, self.std) == 0:
            raise ValueError('{}: std is invalid!'.format(self))
Q
qingqing01 已提交
387

W
wangxinxin08 已提交
388 389 390
    def apply(self, sample, context=None):
        """Normalize the image.
        Operators:
391 392
            1.(optional) Scale the pixel to [0,1]
            2.(optional) Each pixel minus mean and is divided by std
W
wangxinxin08 已提交
393 394 395 396
        """
        im = sample['image']
        im = im.astype(np.float32, copy=False)
        if self.is_scale:
397 398 399 400 401 402 403 404
            scale = 1.0 / 255.0
            im *= scale

        if self.norm_type == 'mean_std':
            mean = np.array(self.mean)[np.newaxis, np.newaxis, :]
            std = np.array(self.std)[np.newaxis, np.newaxis, :]
            im -= mean
            im /= std
W
wangxinxin08 已提交
405
        sample['image'] = im
Q
qingqing01 已提交
406 407 408 409
        return sample


@register_op
W
wangxinxin08 已提交
410
class GridMask(BaseOperator):
Q
qingqing01 已提交
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
    def __init__(self,
                 use_h=True,
                 use_w=True,
                 rotate=1,
                 offset=False,
                 ratio=0.5,
                 mode=1,
                 prob=0.7,
                 upper_iter=360000):
        """
        GridMask Data Augmentation, see https://arxiv.org/abs/2001.04086
        Args:
            use_h (bool): whether to mask vertically
            use_w (boo;): whether to mask horizontally
            rotate (float): angle for the mask to rotate
            offset (float): mask offset
            ratio (float): mask ratio
            mode (int): gridmask mode
            prob (float): max probability to carry out gridmask
            upper_iter (int): suggested to be equal to global max_iter
        """
W
wangxinxin08 已提交
432
        super(GridMask, self).__init__()
Q
qingqing01 已提交
433 434 435 436 437 438 439 440 441
        self.use_h = use_h
        self.use_w = use_w
        self.rotate = rotate
        self.offset = offset
        self.ratio = ratio
        self.mode = mode
        self.prob = prob
        self.upper_iter = upper_iter

W
wangguanzhong 已提交
442 443
        from .gridmask_utils import Gridmask
        self.gridmask_op = Gridmask(
Q
qingqing01 已提交
444 445 446 447 448 449 450 451 452
            use_h,
            use_w,
            rotate=rotate,
            offset=offset,
            ratio=ratio,
            mode=mode,
            prob=prob,
            upper_iter=upper_iter)

W
wangxinxin08 已提交
453 454
    def apply(self, sample, context=None):
        sample['image'] = self.gridmask_op(sample['image'], sample['curr_iter'])
Q
qingqing01 已提交
455 456 457 458
        return sample


@register_op
W
wangxinxin08 已提交
459 460 461 462 463 464 465 466 467 468 469 470
class RandomDistort(BaseOperator):
    """Random color distortion.
    Args:
        hue (list): hue settings. in [lower, upper, probability] format.
        saturation (list): saturation settings. in [lower, upper, probability] format.
        contrast (list): contrast settings. in [lower, upper, probability] format.
        brightness (list): brightness settings. in [lower, upper, probability] format.
        random_apply (bool): whether to apply in random (yolo) or fixed (SSD)
            order.
        count (int): the number of doing distrot
        random_channel (bool): whether to swap channels randomly
    """
Q
qingqing01 已提交
471

W
wangxinxin08 已提交
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
    def __init__(self,
                 hue=[-18, 18, 0.5],
                 saturation=[0.5, 1.5, 0.5],
                 contrast=[0.5, 1.5, 0.5],
                 brightness=[0.5, 1.5, 0.5],
                 random_apply=True,
                 count=4,
                 random_channel=False):
        super(RandomDistort, self).__init__()
        self.hue = hue
        self.saturation = saturation
        self.contrast = contrast
        self.brightness = brightness
        self.random_apply = random_apply
        self.count = count
        self.random_channel = random_channel
Q
qingqing01 已提交
488

W
wangxinxin08 已提交
489 490 491 492
    def apply_hue(self, img):
        low, high, prob = self.hue
        if np.random.uniform(0., 1.) < prob:
            return img
Q
qingqing01 已提交
493

W
wangxinxin08 已提交
494 495 496 497 498 499 500 501 502 503 504 505
        img = img.astype(np.float32)
        # it works, but result differ from HSV version
        delta = np.random.uniform(low, high)
        u = np.cos(delta * np.pi)
        w = np.sin(delta * np.pi)
        bt = np.array([[1.0, 0.0, 0.0], [0.0, u, -w], [0.0, w, u]])
        tyiq = np.array([[0.299, 0.587, 0.114], [0.596, -0.274, -0.321],
                         [0.211, -0.523, 0.311]])
        ityiq = np.array([[1.0, 0.956, 0.621], [1.0, -0.272, -0.647],
                          [1.0, -1.107, 1.705]])
        t = np.dot(np.dot(ityiq, bt), tyiq).T
        img = np.dot(img, t)
Q
qingqing01 已提交
506 507
        return img

W
wangxinxin08 已提交
508 509 510 511 512 513 514 515 516 517 518 519
    def apply_saturation(self, img):
        low, high, prob = self.saturation
        if np.random.uniform(0., 1.) < prob:
            return img
        delta = np.random.uniform(low, high)
        img = img.astype(np.float32)
        # it works, but result differ from HSV version
        gray = img * np.array([[[0.299, 0.587, 0.114]]], dtype=np.float32)
        gray = gray.sum(axis=2, keepdims=True)
        gray *= (1.0 - delta)
        img *= delta
        img += gray
Q
qingqing01 已提交
520 521
        return img

W
wangxinxin08 已提交
522 523 524 525 526 527 528
    def apply_contrast(self, img):
        low, high, prob = self.contrast
        if np.random.uniform(0., 1.) < prob:
            return img
        delta = np.random.uniform(low, high)
        img = img.astype(np.float32)
        img *= delta
Q
qingqing01 已提交
529 530
        return img

W
wangxinxin08 已提交
531 532 533 534 535 536 537 538
    def apply_brightness(self, img):
        low, high, prob = self.brightness
        if np.random.uniform(0., 1.) < prob:
            return img
        delta = np.random.uniform(low, high)
        img = img.astype(np.float32)
        img += delta
        return img
Q
qingqing01 已提交
539

W
wangxinxin08 已提交
540 541 542 543 544 545 546 547 548 549 550 551
    def apply(self, sample, context=None):
        img = sample['image']
        if self.random_apply:
            functions = [
                self.apply_brightness, self.apply_contrast,
                self.apply_saturation, self.apply_hue
            ]
            distortions = np.random.permutation(functions)[:self.count]
            for func in distortions:
                img = func(img)
            sample['image'] = img
            return sample
Q
qingqing01 已提交
552

W
wangxinxin08 已提交
553 554
        img = self.apply_brightness(img)
        mode = np.random.randint(0, 2)
Q
qingqing01 已提交
555

W
wangxinxin08 已提交
556 557
        if mode:
            img = self.apply_contrast(img)
Q
qingqing01 已提交
558

W
wangxinxin08 已提交
559 560
        img = self.apply_saturation(img)
        img = self.apply_hue(img)
Q
qingqing01 已提交
561

W
wangxinxin08 已提交
562 563
        if not mode:
            img = self.apply_contrast(img)
Q
qingqing01 已提交
564

W
wangxinxin08 已提交
565 566 567 568
        if self.random_channel:
            if np.random.randint(0, 2):
                img = img[..., np.random.permutation(3)]
        sample['image'] = img
Q
qingqing01 已提交
569 570 571 572
        return sample


@register_op
W
wangxinxin08 已提交
573 574
class AutoAugment(BaseOperator):
    def __init__(self, autoaug_type="v1"):
Q
qingqing01 已提交
575 576
        """
        Args:
W
wangxinxin08 已提交
577
            autoaug_type (str): autoaug type, support v0, v1, v2, v3, test
Q
qingqing01 已提交
578
        """
W
wangxinxin08 已提交
579 580
        super(AutoAugment, self).__init__()
        self.autoaug_type = autoaug_type
Q
qingqing01 已提交
581

W
wangxinxin08 已提交
582
    def apply(self, sample, context=None):
Q
qingqing01 已提交
583
        """
W
wangxinxin08 已提交
584 585 586 587 588 589 590 591 592
        Learning Data Augmentation Strategies for Object Detection, see https://arxiv.org/abs/1906.11172
        """
        im = sample['image']
        gt_bbox = sample['gt_bbox']
        if not isinstance(im, np.ndarray):
            raise TypeError("{}: image is not a numpy array.".format(self))
        if len(im.shape) != 3:
            raise ImageError("{}: image is not 3-dimensional.".format(self))
        if len(gt_bbox) == 0:
Q
qingqing01 已提交
593 594
            return sample

W
wangxinxin08 已提交
595 596 597 598 599 600
        height, width, _ = im.shape
        norm_gt_bbox = np.ones_like(gt_bbox, dtype=np.float32)
        norm_gt_bbox[:, 0] = gt_bbox[:, 1] / float(height)
        norm_gt_bbox[:, 1] = gt_bbox[:, 0] / float(width)
        norm_gt_bbox[:, 2] = gt_bbox[:, 3] / float(height)
        norm_gt_bbox[:, 3] = gt_bbox[:, 2] / float(width)
Q
qingqing01 已提交
601

W
wangxinxin08 已提交
602 603 604 605 606 607 608 609
        from .autoaugment_utils import distort_image_with_autoaugment
        im, norm_gt_bbox = distort_image_with_autoaugment(im, norm_gt_bbox,
                                                          self.autoaug_type)

        gt_bbox[:, 0] = norm_gt_bbox[:, 1] * float(width)
        gt_bbox[:, 1] = norm_gt_bbox[:, 0] * float(height)
        gt_bbox[:, 2] = norm_gt_bbox[:, 3] * float(width)
        gt_bbox[:, 3] = norm_gt_bbox[:, 2] * float(height)
Q
qingqing01 已提交
610 611 612 613 614 615 616

        sample['image'] = im
        sample['gt_bbox'] = gt_bbox
        return sample


@register_op
W
wangxinxin08 已提交
617 618
class RandomFlip(BaseOperator):
    def __init__(self, prob=0.5):
Q
qingqing01 已提交
619 620
        """
        Args:
W
wangxinxin08 已提交
621
            prob (float): the probability of flipping image
Q
qingqing01 已提交
622
        """
W
wangxinxin08 已提交
623 624 625 626
        super(RandomFlip, self).__init__()
        self.prob = prob
        if not (isinstance(self.prob, float)):
            raise TypeError("{}: input type is invalid.".format(self))
Q
qingqing01 已提交
627

W
wangxinxin08 已提交
628 629 630 631 632
    def apply_segm(self, segms, height, width):
        def _flip_poly(poly, width):
            flipped_poly = np.array(poly)
            flipped_poly[0::2] = width - np.array(poly[0::2])
            return flipped_poly.tolist()
Q
qingqing01 已提交
633

W
wangxinxin08 已提交
634 635 636 637 638 639 640
        def _flip_rle(rle, height, width):
            if 'counts' in rle and type(rle['counts']) == list:
                rle = mask_util.frPyObjects(rle, height, width)
            mask = mask_util.decode(rle)
            mask = mask[:, ::-1]
            rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8))
            return rle
Q
qingqing01 已提交
641

W
wangxinxin08 已提交
642 643 644 645 646 647 648 649 650 651
        flipped_segms = []
        for segm in segms:
            if is_poly(segm):
                # Polygon format
                flipped_segms.append([_flip_poly(poly, width) for poly in segm])
            else:
                # RLE format
                import pycocotools.mask as mask_util
                flipped_segms.append(_flip_rle(segm, height, width))
        return flipped_segms
Q
qingqing01 已提交
652

W
wangxinxin08 已提交
653 654 655 656 657 658
    def apply_keypoint(self, gt_keypoint, width):
        for i in range(gt_keypoint.shape[1]):
            if i % 2 == 0:
                old_x = gt_keypoint[:, i].copy()
                gt_keypoint[:, i] = width - old_x
        return gt_keypoint
Q
qingqing01 已提交
659

W
wangxinxin08 已提交
660 661
    def apply_image(self, image):
        return image[:, ::-1, :]
Q
qingqing01 已提交
662

W
wangxinxin08 已提交
663 664 665 666 667 668
    def apply_bbox(self, bbox, width):
        oldx1 = bbox[:, 0].copy()
        oldx2 = bbox[:, 2].copy()
        bbox[:, 0] = width - oldx2
        bbox[:, 2] = width - oldx1
        return bbox
Q
qingqing01 已提交
669

W
wangxinxin08 已提交
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
    def apply(self, sample, context=None):
        """Filp the image and bounding box.
        Operators:
            1. Flip the image numpy.
            2. Transform the bboxes' x coordinates.
              (Must judge whether the coordinates are normalized!)
            3. Transform the segmentations' x coordinates.
              (Must judge whether the coordinates are normalized!)
        Output:
            sample: the image, bounding box and segmentation part
                    in sample are flipped.
        """
        if np.random.uniform(0, 1) < self.prob:
            im = sample['image']
            height, width = im.shape[:2]
            im = self.apply_image(im)
            if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
                sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], width)
            if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
                sample['gt_poly'] = self.apply_segm(sample['gt_poly'], height,
                                                    width)
            if 'gt_keypoint' in sample and len(sample['gt_keypoint']) > 0:
                sample['gt_keypoint'] = self.apply_keypoint(
                    sample['gt_keypoint'], width)

            if 'semantic' in sample and sample['semantic']:
                sample['semantic'] = sample['semantic'][:, ::-1]

            if 'gt_segm' in sample and sample['gt_segm'].any():
                sample['gt_segm'] = sample['gt_segm'][:, :, ::-1]

            sample['flipped'] = True
            sample['image'] = im
Q
qingqing01 已提交
703 704 705 706
        return sample


@register_op
W
wangxinxin08 已提交
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
class Resize(BaseOperator):
    def __init__(self, target_size, keep_ratio, interp=cv2.INTER_LINEAR):
        """
        Resize image to target size. if keep_ratio is True, 
        resize the image's long side to the maximum of target_size
        if keep_ratio is False, resize the image to target size(h, w)
        Args:
            target_size (int|list): image target size
            keep_ratio (bool): whether keep_ratio or not, default true
            interp (int): the interpolation method
        """
        super(Resize, self).__init__()
        self.keep_ratio = keep_ratio
        self.interp = interp
        if not isinstance(target_size, (Integral, Sequence)):
            raise TypeError(
                "Type of target_size is invalid. Must be Integer or List or Tuple, now is {}".
                format(type(target_size)))
        if isinstance(target_size, Integral):
            target_size = [target_size, target_size]
        self.target_size = target_size
Q
qingqing01 已提交
728

W
wangxinxin08 已提交
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
    def apply_image(self, image, scale):
        im_scale_x, im_scale_y = scale

        return cv2.resize(
            image,
            None,
            None,
            fx=im_scale_x,
            fy=im_scale_y,
            interpolation=self.interp)

    def apply_bbox(self, bbox, scale, size):
        im_scale_x, im_scale_y = scale
        resize_w, resize_h = size
        bbox[:, 0::2] *= im_scale_x
        bbox[:, 1::2] *= im_scale_y
        bbox[:, 0::2] = np.clip(bbox[:, 0::2], 0, resize_w)
        bbox[:, 1::2] = np.clip(bbox[:, 1::2], 0, resize_h)
        return bbox

    def apply_segm(self, segms, im_size, scale):
        def _resize_poly(poly, im_scale_x, im_scale_y):
W
wangguanzhong 已提交
751
            resized_poly = np.array(poly).astype('float32')
W
wangxinxin08 已提交
752 753 754 755 756 757 758
            resized_poly[0::2] *= im_scale_x
            resized_poly[1::2] *= im_scale_y
            return resized_poly.tolist()

        def _resize_rle(rle, im_h, im_w, im_scale_x, im_scale_y):
            if 'counts' in rle and type(rle['counts']) == list:
                rle = mask_util.frPyObjects(rle, im_h, im_w)
Q
qingqing01 已提交
759

W
wangxinxin08 已提交
760 761
            mask = mask_util.decode(rle)
            mask = cv2.resize(
G
George Ni 已提交
762
                mask,
W
wangxinxin08 已提交
763 764 765 766 767 768 769
                None,
                None,
                fx=im_scale_x,
                fy=im_scale_y,
                interpolation=self.interp)
            rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8))
            return rle
Q
qingqing01 已提交
770

W
wangxinxin08 已提交
771 772 773 774 775 776 777 778 779 780 781 782 783 784
        im_h, im_w = im_size
        im_scale_x, im_scale_y = scale
        resized_segms = []
        for segm in segms:
            if is_poly(segm):
                # Polygon format
                resized_segms.append([
                    _resize_poly(poly, im_scale_x, im_scale_y) for poly in segm
                ])
            else:
                # RLE format
                import pycocotools.mask as mask_util
                resized_segms.append(
                    _resize_rle(segm, im_h, im_w, im_scale_x, im_scale_y))
Q
qingqing01 已提交
785

W
wangxinxin08 已提交
786
        return resized_segms
Q
qingqing01 已提交
787

W
wangxinxin08 已提交
788 789 790 791 792 793 794 795
    def apply(self, sample, context=None):
        """ Resize the image numpy.
        """
        im = sample['image']
        if not isinstance(im, np.ndarray):
            raise TypeError("{}: image type is not numpy.".format(self))
        if len(im.shape) != 3:
            raise ImageError('{}: image is not 3-dimensional.'.format(self))
Q
qingqing01 已提交
796

W
wangxinxin08 已提交
797 798 799
        # apply image
        im_shape = im.shape
        if self.keep_ratio:
Q
qingqing01 已提交
800

W
wangxinxin08 已提交
801 802
            im_size_min = np.min(im_shape[0:2])
            im_size_max = np.max(im_shape[0:2])
Q
qingqing01 已提交
803

W
wangxinxin08 已提交
804 805
            target_size_min = np.min(self.target_size)
            target_size_max = np.max(self.target_size)
Q
qingqing01 已提交
806

W
wangxinxin08 已提交
807 808
            im_scale = min(target_size_min / im_size_min,
                           target_size_max / im_size_max)
Q
qingqing01 已提交
809

W
wangxinxin08 已提交
810 811
            resize_h = im_scale * float(im_shape[0])
            resize_w = im_scale * float(im_shape[1])
Q
qingqing01 已提交
812

W
wangxinxin08 已提交
813 814
            im_scale_x = im_scale
            im_scale_y = im_scale
Q
qingqing01 已提交
815
        else:
W
wangxinxin08 已提交
816 817 818 819 820
            resize_h, resize_w = self.target_size
            im_scale_y = resize_h / im_shape[0]
            im_scale_x = resize_w / im_shape[1]

        im = self.apply_image(sample['image'], [im_scale_x, im_scale_y])
821
        sample['image'] = im.astype(np.float32)
W
wangxinxin08 已提交
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
        sample['im_shape'] = np.asarray([resize_h, resize_w], dtype=np.float32)
        if 'scale_factor' in sample:
            scale_factor = sample['scale_factor']
            sample['scale_factor'] = np.asarray(
                [scale_factor[0] * im_scale_y, scale_factor[1] * im_scale_x],
                dtype=np.float32)
        else:
            sample['scale_factor'] = np.asarray(
                [im_scale_y, im_scale_x], dtype=np.float32)

        # apply bbox
        if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
            sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'],
                                                [im_scale_x, im_scale_y],
                                                [resize_w, resize_h])

        # apply polygon
        if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
            sample['gt_poly'] = self.apply_segm(sample['gt_poly'], im_shape[:2],
                                                [im_scale_x, im_scale_y])

        # apply semantic
        if 'semantic' in sample and sample['semantic']:
            semantic = sample['semantic']
            semantic = cv2.resize(
                semantic.astype('float32'),
                None,
                None,
                fx=im_scale_x,
                fy=im_scale_y,
                interpolation=self.interp)
            semantic = np.asarray(semantic).astype('int32')
            semantic = np.expand_dims(semantic, 0)
            sample['semantic'] = semantic

        # apply gt_segm
        if 'gt_segm' in sample and len(sample['gt_segm']) > 0:
            masks = [
                cv2.resize(
                    gt_segm,
                    None,
                    None,
                    fx=im_scale_x,
                    fy=im_scale_y,
                    interpolation=cv2.INTER_NEAREST)
                for gt_segm in sample['gt_segm']
            ]
            sample['gt_segm'] = np.asarray(masks).astype(np.uint8)
Q
qingqing01 已提交
870 871 872 873 874

        return sample


@register_op
W
wangxinxin08 已提交
875
class MultiscaleTestResize(BaseOperator):
Q
qingqing01 已提交
876
    def __init__(self,
W
wangxinxin08 已提交
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
                 origin_target_size=[800, 1333],
                 target_size=[],
                 interp=cv2.INTER_LINEAR,
                 use_flip=True):
        """
        Rescale image to the each size in target size, and capped at max_size.
        Args:
            origin_target_size (list): origin target size of image
            target_size (list): A list of target sizes of image.
            interp (int): the interpolation method.
            use_flip (bool): whether use flip augmentation.
        """
        super(MultiscaleTestResize, self).__init__()
        self.interp = interp
        self.use_flip = use_flip
Q
qingqing01 已提交
892

W
wangxinxin08 已提交
893 894 895 896 897
        if not isinstance(target_size, Sequence):
            raise TypeError(
                "Type of target_size is invalid. Must be List or Tuple, now is {}".
                format(type(target_size)))
        self.target_size = target_size
Q
qingqing01 已提交
898

W
wangxinxin08 已提交
899 900 901 902
        if not isinstance(origin_target_size, Sequence):
            raise TypeError(
                "Type of origin_target_size is invalid. Must be List or Tuple, now is {}".
                format(type(origin_target_size)))
Q
qingqing01 已提交
903

W
wangxinxin08 已提交
904
        self.origin_target_size = origin_target_size
Q
qingqing01 已提交
905

W
wangxinxin08 已提交
906 907 908 909 910 911 912 913 914 915
    def apply(self, sample, context=None):
        """ Resize the image numpy for multi-scale test.
        """
        samples = []
        resizer = Resize(
            self.origin_target_size, keep_ratio=True, interp=self.interp)
        samples.append(resizer(sample.copy(), context))
        if self.use_flip:
            flipper = RandomFlip(1.1)
            samples.append(flipper(sample.copy(), context=context))
Q
qingqing01 已提交
916

W
wangxinxin08 已提交
917 918 919
        for size in self.target_size:
            resizer = Resize(size, keep_ratio=True, interp=self.interp)
            samples.append(resizer(sample.copy(), context))
Q
qingqing01 已提交
920

W
wangxinxin08 已提交
921
        return samples
Q
qingqing01 已提交
922 923


W
wangxinxin08 已提交
924 925
@register_op
class RandomResize(BaseOperator):
Q
qingqing01 已提交
926
    def __init__(self,
W
wangxinxin08 已提交
927 928 929
                 target_size,
                 keep_ratio=True,
                 interp=cv2.INTER_LINEAR,
930
                 random_range=False,
W
wangxinxin08 已提交
931 932 933 934 935 936 937 938
                 random_size=True,
                 random_interp=False):
        """
        Resize image to target size randomly. random target_size and interpolation method
        Args:
            target_size (int, list, tuple): image target size, if random size is True, must be list or tuple
            keep_ratio (bool): whether keep_raio or not, default true
            interp (int): the interpolation method
939 940
            random_range (bool): whether random select target size of image, the target_size must be 
                a [[min_short_edge, long_edge], [max_short_edge, long_edge]]
W
wangxinxin08 已提交
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
            random_size (bool): whether random select target size of image
            random_interp (bool): whether random select interpolation method
        """
        super(RandomResize, self).__init__()
        self.keep_ratio = keep_ratio
        self.interp = interp
        self.interps = [
            cv2.INTER_NEAREST,
            cv2.INTER_LINEAR,
            cv2.INTER_AREA,
            cv2.INTER_CUBIC,
            cv2.INTER_LANCZOS4,
        ]
        assert isinstance(target_size, (
            Integral, Sequence)), "target_size must be Integer, List or Tuple"
956 957
        if (random_range or random_size) and not isinstance(target_size,
                                                            Sequence):
W
wangxinxin08 已提交
958
            raise TypeError(
959
                "Type of target_size is invalid when random_size or random_range is True. Must be List or Tuple, now is {}".
W
wangxinxin08 已提交
960
                format(type(target_size)))
961 962 963 964
        if random_range and not len(target_size) == 2:
            raise TypeError(
                "target_size must be two list as [[min_short_edge, long_edge], [max_short_edge, long_edge]] when random_range is True."
            )
W
wangxinxin08 已提交
965
        self.target_size = target_size
966
        self.random_range = random_range
W
wangxinxin08 已提交
967 968
        self.random_size = random_size
        self.random_interp = random_interp
Q
qingqing01 已提交
969

W
wangxinxin08 已提交
970 971 972
    def apply(self, sample, context=None):
        """ Resize the image numpy.
        """
973 974 975 976 977
        if self.random_range:
            short_edge = np.random.randint(self.target_size[0][0],
                                           self.target_size[1][0] + 1)
            long_edge = max(self.target_size[0][1], self.target_size[1][1] + 1)
            target_size = [short_edge, long_edge]
W
wangxinxin08 已提交
978
        else:
979 980 981 982
            if self.random_size:
                target_size = random.choice(self.target_size)
            else:
                target_size = self.target_size
Q
qingqing01 已提交
983

W
wangxinxin08 已提交
984 985 986 987 988 989 990
        if self.random_interp:
            interp = random.choice(self.interps)
        else:
            interp = self.interp

        resizer = Resize(target_size, self.keep_ratio, interp)
        return resizer(sample, context=context)
Q
qingqing01 已提交
991 992 993 994 995 996 997 998 999 1000 1001


@register_op
class RandomExpand(BaseOperator):
    """Random expand the canvas.
    Args:
        ratio (float): maximum expansion ratio.
        prob (float): probability to expand.
        fill_value (list): color value used to fill the canvas. in RGB order.
    """

W
wangxinxin08 已提交
1002
    def __init__(self, ratio=4., prob=0.5, fill_value=(127.5, 127.5, 127.5)):
Q
qingqing01 已提交
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
        super(RandomExpand, self).__init__()
        assert ratio > 1.01, "expand ratio must be larger than 1.01"
        self.ratio = ratio
        self.prob = prob
        assert isinstance(fill_value, (Number, Sequence)), \
            "fill value must be either float or sequence"
        if isinstance(fill_value, Number):
            fill_value = (fill_value, ) * 3
        if not isinstance(fill_value, tuple):
            fill_value = tuple(fill_value)
        self.fill_value = fill_value

W
wangxinxin08 已提交
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
    def apply(self, sample, context=None):
        if np.random.uniform(0., 1.) < self.prob:
            return sample

        im = sample['image']
        height, width = im.shape[:2]
        ratio = np.random.uniform(1., self.ratio)
        h = int(height * ratio)
        w = int(width * ratio)
        if not h > height or not w > width:
            return sample
        y = np.random.randint(0, h - height)
        x = np.random.randint(0, w - width)
        offsets, size = [x, y], [h, w]

        pad = Pad(size,
                  pad_mode=-1,
                  offsets=offsets,
                  fill_value=self.fill_value)

        return pad(sample, context=context)


@register_op
class CropWithSampling(BaseOperator):
    def __init__(self, batch_sampler, satisfy_all=False, avoid_no_bbox=True):
        """
        Args:
            batch_sampler (list): Multiple sets of different
                                  parameters for cropping.
            satisfy_all (bool): whether all boxes must satisfy.
            e.g.[[1, 1, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0],
                 [1, 50, 0.3, 1.0, 0.5, 2.0, 0.1, 1.0],
                 [1, 50, 0.3, 1.0, 0.5, 2.0, 0.3, 1.0],
                 [1, 50, 0.3, 1.0, 0.5, 2.0, 0.5, 1.0],
                 [1, 50, 0.3, 1.0, 0.5, 2.0, 0.7, 1.0],
                 [1, 50, 0.3, 1.0, 0.5, 2.0, 0.9, 1.0],
                 [1, 50, 0.3, 1.0, 0.5, 2.0, 0.0, 1.0]]
           [max sample, max trial, min scale, max scale,
            min aspect ratio, max aspect ratio,
            min overlap, max overlap]
1056
            avoid_no_bbox (bool): whether to avoid the
W
wangxinxin08 已提交
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
                                  situation where the box does not appear.
        """
        super(CropWithSampling, self).__init__()
        self.batch_sampler = batch_sampler
        self.satisfy_all = satisfy_all
        self.avoid_no_bbox = avoid_no_bbox

    def apply(self, sample, context):
        """
        Crop the image and modify bounding box.
        Operators:
            1. Scale the image width and height.
            2. Crop the image according to a radom sample.
            3. Rescale the bounding box.
            4. Determine if the new bbox is satisfied in the new image.
        Returns:
            sample: the image, bounding box are replaced.
        """
        assert 'image' in sample, "image data not found"
        im = sample['image']
        gt_bbox = sample['gt_bbox']
        gt_class = sample['gt_class']
        im_height, im_width = im.shape[:2]
        gt_score = None
        if 'gt_score' in sample:
            gt_score = sample['gt_score']
        sampled_bbox = []
        gt_bbox = gt_bbox.tolist()
        for sampler in self.batch_sampler:
            found = 0
            for i in range(sampler[1]):
                if found >= sampler[0]:
                    break
                sample_bbox = generate_sample_bbox(sampler)
                if satisfy_sample_constraint(sampler, sample_bbox, gt_bbox,
                                             self.satisfy_all):
                    sampled_bbox.append(sample_bbox)
                    found = found + 1
        im = np.array(im)
        while sampled_bbox:
            idx = int(np.random.uniform(0, len(sampled_bbox)))
            sample_bbox = sampled_bbox.pop(idx)
            sample_bbox = clip_bbox(sample_bbox)
            crop_bbox, crop_class, crop_score = \
                filter_and_process(sample_bbox, gt_bbox, gt_class, scores=gt_score)
            if self.avoid_no_bbox:
                if len(crop_bbox) < 1:
                    continue
            xmin = int(sample_bbox[0] * im_width)
            xmax = int(sample_bbox[2] * im_width)
            ymin = int(sample_bbox[1] * im_height)
            ymax = int(sample_bbox[3] * im_height)
            im = im[ymin:ymax, xmin:xmax]
            sample['image'] = im
            sample['gt_bbox'] = crop_bbox
            sample['gt_class'] = crop_class
            sample['gt_score'] = crop_score
            return sample
        return sample


@register_op
class CropWithDataAchorSampling(BaseOperator):
    def __init__(self,
                 batch_sampler,
                 anchor_sampler=None,
                 target_size=None,
                 das_anchor_scales=[16, 32, 64, 128],
                 sampling_prob=0.5,
                 min_size=8.,
                 avoid_no_bbox=True):
        """
        Args:
            anchor_sampler (list): anchor_sampling sets of different
                                  parameters for cropping.
            batch_sampler (list): Multiple sets of different
                                  parameters for cropping.
              e.g.[[1, 10, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.2, 0.0]]
                  [[1, 50, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0],
                   [1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0],
                   [1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0],
                   [1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0],
                   [1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0]]
              [max sample, max trial, min scale, max scale,
               min aspect ratio, max aspect ratio,
               min overlap, max overlap, min coverage, max coverage]
1143
            target_size (int): target image size.
W
wangxinxin08 已提交
1144 1145 1146
            das_anchor_scales (list[float]): a list of anchor scales in data
                anchor smapling.
            min_size (float): minimum size of sampled bbox.
1147
            avoid_no_bbox (bool): whether to avoid the
W
wangxinxin08 已提交
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
                                  situation where the box does not appear.
        """
        super(CropWithDataAchorSampling, self).__init__()
        self.anchor_sampler = anchor_sampler
        self.batch_sampler = batch_sampler
        self.target_size = target_size
        self.sampling_prob = sampling_prob
        self.min_size = min_size
        self.avoid_no_bbox = avoid_no_bbox
        self.das_anchor_scales = np.array(das_anchor_scales)

    def apply(self, sample, context):
        """
        Crop the image and modify bounding box.
        Operators:
            1. Scale the image width and height.
            2. Crop the image according to a radom sample.
            3. Rescale the bounding box.
            4. Determine if the new bbox is satisfied in the new image.
        Returns:
            sample: the image, bounding box are replaced.
        """
        assert 'image' in sample, "image data not found"
        im = sample['image']
        gt_bbox = sample['gt_bbox']
        gt_class = sample['gt_class']
        image_height, image_width = im.shape[:2]
1175 1176 1177 1178
        gt_bbox[:, 0] /= image_width
        gt_bbox[:, 1] /= image_height
        gt_bbox[:, 2] /= image_width
        gt_bbox[:, 3] /= image_height
W
wangxinxin08 已提交
1179 1180 1181 1182 1183
        gt_score = None
        if 'gt_score' in sample:
            gt_score = sample['gt_score']
        sampled_bbox = []
        gt_bbox = gt_bbox.tolist()
Q
qingqing01 已提交
1184

W
wangxinxin08 已提交
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
        prob = np.random.uniform(0., 1.)
        if prob > self.sampling_prob:  # anchor sampling
            assert self.anchor_sampler
            for sampler in self.anchor_sampler:
                found = 0
                for i in range(sampler[1]):
                    if found >= sampler[0]:
                        break
                    sample_bbox = data_anchor_sampling(
                        gt_bbox, image_width, image_height,
                        self.das_anchor_scales, self.target_size)
                    if sample_bbox == 0:
                        break
                    if satisfy_sample_constraint_coverage(sampler, sample_bbox,
                                                          gt_bbox):
                        sampled_bbox.append(sample_bbox)
                        found = found + 1
            im = np.array(im)
            while sampled_bbox:
                idx = int(np.random.uniform(0, len(sampled_bbox)))
                sample_bbox = sampled_bbox.pop(idx)
Q
qingqing01 已提交
1206

W
wangxinxin08 已提交
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
                if 'gt_keypoint' in sample.keys():
                    keypoints = (sample['gt_keypoint'],
                                 sample['keypoint_ignore'])
                    crop_bbox, crop_class, crop_score, gt_keypoints = \
                        filter_and_process(sample_bbox, gt_bbox, gt_class,
                                scores=gt_score,
                                keypoints=keypoints)
                else:
                    crop_bbox, crop_class, crop_score = filter_and_process(
                        sample_bbox, gt_bbox, gt_class, scores=gt_score)
                crop_bbox, crop_class, crop_score = bbox_area_sampling(
                    crop_bbox, crop_class, crop_score, self.target_size,
                    self.min_size)
Q
qingqing01 已提交
1220

W
wangxinxin08 已提交
1221 1222 1223 1224 1225
                if self.avoid_no_bbox:
                    if len(crop_bbox) < 1:
                        continue
                im = crop_image_sampling(im, sample_bbox, image_width,
                                         image_height, self.target_size)
1226 1227 1228 1229 1230
                height, width = im.shape[:2]
                crop_bbox[:, 0] *= width
                crop_bbox[:, 1] *= height
                crop_bbox[:, 2] *= width
                crop_bbox[:, 3] *= height
W
wangxinxin08 已提交
1231 1232 1233
                sample['image'] = im
                sample['gt_bbox'] = crop_bbox
                sample['gt_class'] = crop_class
1234 1235
                if 'gt_score' in sample:
                    sample['gt_score'] = crop_score
W
wangxinxin08 已提交
1236 1237 1238 1239
                if 'gt_keypoint' in sample.keys():
                    sample['gt_keypoint'] = gt_keypoints[0]
                    sample['keypoint_ignore'] = gt_keypoints[1]
                return sample
Q
qingqing01 已提交
1240 1241
            return sample

W
wangxinxin08 已提交
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
        else:
            for sampler in self.batch_sampler:
                found = 0
                for i in range(sampler[1]):
                    if found >= sampler[0]:
                        break
                    sample_bbox = generate_sample_bbox_square(
                        sampler, image_width, image_height)
                    if satisfy_sample_constraint_coverage(sampler, sample_bbox,
                                                          gt_bbox):
                        sampled_bbox.append(sample_bbox)
                        found = found + 1
            im = np.array(im)
            while sampled_bbox:
                idx = int(np.random.uniform(0, len(sampled_bbox)))
                sample_bbox = sampled_bbox.pop(idx)
                sample_bbox = clip_bbox(sample_bbox)
Q
qingqing01 已提交
1259

W
wangxinxin08 已提交
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
                if 'gt_keypoint' in sample.keys():
                    keypoints = (sample['gt_keypoint'],
                                 sample['keypoint_ignore'])
                    crop_bbox, crop_class, crop_score, gt_keypoints = \
                        filter_and_process(sample_bbox, gt_bbox, gt_class,
                                scores=gt_score,
                                keypoints=keypoints)
                else:
                    crop_bbox, crop_class, crop_score = filter_and_process(
                        sample_bbox, gt_bbox, gt_class, scores=gt_score)
                # sampling bbox according the bbox area
                crop_bbox, crop_class, crop_score = bbox_area_sampling(
                    crop_bbox, crop_class, crop_score, self.target_size,
                    self.min_size)
Q
qingqing01 已提交
1274

W
wangxinxin08 已提交
1275 1276 1277 1278 1279 1280 1281 1282
                if self.avoid_no_bbox:
                    if len(crop_bbox) < 1:
                        continue
                xmin = int(sample_bbox[0] * image_width)
                xmax = int(sample_bbox[2] * image_width)
                ymin = int(sample_bbox[1] * image_height)
                ymax = int(sample_bbox[3] * image_height)
                im = im[ymin:ymax, xmin:xmax]
1283 1284 1285 1286 1287
                height, width = im.shape[:2]
                crop_bbox[:, 0] *= width
                crop_bbox[:, 1] *= height
                crop_bbox[:, 2] *= width
                crop_bbox[:, 3] *= height
W
wangxinxin08 已提交
1288 1289 1290
                sample['image'] = im
                sample['gt_bbox'] = crop_bbox
                sample['gt_class'] = crop_class
1291 1292
                if 'gt_score' in sample:
                    sample['gt_score'] = crop_score
W
wangxinxin08 已提交
1293 1294 1295 1296 1297
                if 'gt_keypoint' in sample.keys():
                    sample['gt_keypoint'] = gt_keypoints[0]
                    sample['keypoint_ignore'] = gt_keypoints[1]
                return sample
            return sample
Q
qingqing01 已提交
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400


@register_op
class RandomCrop(BaseOperator):
    """Random crop image and bboxes.
    Args:
        aspect_ratio (list): aspect ratio of cropped region.
            in [min, max] format.
        thresholds (list): iou thresholds for decide a valid bbox crop.
        scaling (list): ratio between a cropped region and the original image.
             in [min, max] format.
        num_attempts (int): number of tries before giving up.
        allow_no_crop (bool): allow return without actually cropping them.
        cover_all_box (bool): ensure all bboxes are covered in the final crop.
        is_mask_crop(bool): whether crop the segmentation.
    """

    def __init__(self,
                 aspect_ratio=[.5, 2.],
                 thresholds=[.0, .1, .3, .5, .7, .9],
                 scaling=[.3, 1.],
                 num_attempts=50,
                 allow_no_crop=True,
                 cover_all_box=False,
                 is_mask_crop=False):
        super(RandomCrop, self).__init__()
        self.aspect_ratio = aspect_ratio
        self.thresholds = thresholds
        self.scaling = scaling
        self.num_attempts = num_attempts
        self.allow_no_crop = allow_no_crop
        self.cover_all_box = cover_all_box
        self.is_mask_crop = is_mask_crop

    def crop_segms(self, segms, valid_ids, crop, height, width):
        def _crop_poly(segm, crop):
            xmin, ymin, xmax, ymax = crop
            crop_coord = [xmin, ymin, xmin, ymax, xmax, ymax, xmax, ymin]
            crop_p = np.array(crop_coord).reshape(4, 2)
            crop_p = Polygon(crop_p)

            crop_segm = list()
            for poly in segm:
                poly = np.array(poly).reshape(len(poly) // 2, 2)
                polygon = Polygon(poly)
                if not polygon.is_valid:
                    exterior = polygon.exterior
                    multi_lines = exterior.intersection(exterior)
                    polygons = shapely.ops.polygonize(multi_lines)
                    polygon = MultiPolygon(polygons)
                multi_polygon = list()
                if isinstance(polygon, MultiPolygon):
                    multi_polygon = copy.deepcopy(polygon)
                else:
                    multi_polygon.append(copy.deepcopy(polygon))
                for per_polygon in multi_polygon:
                    inter = per_polygon.intersection(crop_p)
                    if not inter:
                        continue
                    if isinstance(inter, (MultiPolygon, GeometryCollection)):
                        for part in inter:
                            if not isinstance(part, Polygon):
                                continue
                            part = np.squeeze(
                                np.array(part.exterior.coords[:-1]).reshape(1,
                                                                            -1))
                            part[0::2] -= xmin
                            part[1::2] -= ymin
                            crop_segm.append(part.tolist())
                    elif isinstance(inter, Polygon):
                        crop_poly = np.squeeze(
                            np.array(inter.exterior.coords[:-1]).reshape(1, -1))
                        crop_poly[0::2] -= xmin
                        crop_poly[1::2] -= ymin
                        crop_segm.append(crop_poly.tolist())
                    else:
                        continue
            return crop_segm

        def _crop_rle(rle, crop, height, width):
            if 'counts' in rle and type(rle['counts']) == list:
                rle = mask_util.frPyObjects(rle, height, width)
            mask = mask_util.decode(rle)
            mask = mask[crop[1]:crop[3], crop[0]:crop[2]]
            rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8))
            return rle

        crop_segms = []
        for id in valid_ids:
            segm = segms[id]
            if is_poly(segm):
                import copy
                import shapely.ops
                from shapely.geometry import Polygon, MultiPolygon, GeometryCollection
                logging.getLogger("shapely").setLevel(logging.WARNING)
                # Polygon format
                crop_segms.append(_crop_poly(segm, crop))
            else:
                # RLE format
                import pycocotools.mask as mask_util
                crop_segms.append(_crop_rle(segm, crop, height, width))
        return crop_segms

W
wangxinxin08 已提交
1401
    def apply(self, sample, context=None):
Q
qingqing01 已提交
1402 1403 1404
        if 'gt_bbox' in sample and len(sample['gt_bbox']) == 0:
            return sample

W
wangxinxin08 已提交
1405
        h, w = sample['image'].shape[:2]
Q
qingqing01 已提交
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
        gt_bbox = sample['gt_bbox']

        # NOTE Original method attempts to generate one candidate for each
        # threshold then randomly sample one from the resulting list.
        # Here a short circuit approach is taken, i.e., randomly choose a
        # threshold and attempt to find a valid crop, and simply return the
        # first one found.
        # The probability is not exactly the same, kinda resembling the
        # "Monty Hall" problem. Actually carrying out the attempts will affect
        # observability (just like opening doors in the "Monty Hall" game).
        thresholds = list(self.thresholds)
        if self.allow_no_crop:
            thresholds.append('no_crop')
        np.random.shuffle(thresholds)

        for thresh in thresholds:
            if thresh == 'no_crop':
                return sample

            found = False
            for i in range(self.num_attempts):
                scale = np.random.uniform(*self.scaling)
                if self.aspect_ratio is not None:
                    min_ar, max_ar = self.aspect_ratio
                    aspect_ratio = np.random.uniform(
                        max(min_ar, scale**2), min(max_ar, scale**-2))
                    h_scale = scale / np.sqrt(aspect_ratio)
                    w_scale = scale * np.sqrt(aspect_ratio)
                else:
                    h_scale = np.random.uniform(*self.scaling)
                    w_scale = np.random.uniform(*self.scaling)
                crop_h = h * h_scale
                crop_w = w * w_scale
                if self.aspect_ratio is None:
                    if crop_h / crop_w < 0.5 or crop_h / crop_w > 2.0:
                        continue

                crop_h = int(crop_h)
                crop_w = int(crop_w)
                crop_y = np.random.randint(0, h - crop_h)
                crop_x = np.random.randint(0, w - crop_w)
                crop_box = [crop_x, crop_y, crop_x + crop_w, crop_y + crop_h]
                iou = self._iou_matrix(
                    gt_bbox, np.array(
                        [crop_box], dtype=np.float32))
                if iou.max() < thresh:
                    continue

                if self.cover_all_box and iou.min() < thresh:
                    continue

                cropped_box, valid_ids = self._crop_box_with_center_constraint(
                    gt_bbox, np.array(
                        crop_box, dtype=np.float32))
                if valid_ids.size > 0:
                    found = True
                    break

            if found:
                if self.is_mask_crop and 'gt_poly' in sample and len(sample[
                        'gt_poly']) > 0:
                    crop_polys = self.crop_segms(
                        sample['gt_poly'],
                        valid_ids,
                        np.array(
                            crop_box, dtype=np.int64),
                        h,
                        w)
                    if [] in crop_polys:
                        delete_id = list()
                        valid_polys = list()
                        for id, crop_poly in enumerate(crop_polys):
                            if crop_poly == []:
                                delete_id.append(id)
                            else:
                                valid_polys.append(crop_poly)
                        valid_ids = np.delete(valid_ids, delete_id)
                        if len(valid_polys) == 0:
                            return sample
                        sample['gt_poly'] = valid_polys
                    else:
                        sample['gt_poly'] = crop_polys
W
wangxinxin08 已提交
1488 1489 1490 1491 1492 1493 1494

                if 'gt_segm' in sample:
                    sample['gt_segm'] = self._crop_segm(sample['gt_segm'],
                                                        crop_box)
                    sample['gt_segm'] = np.take(
                        sample['gt_segm'], valid_ids, axis=0)

Q
qingqing01 已提交
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
                sample['image'] = self._crop_image(sample['image'], crop_box)
                sample['gt_bbox'] = np.take(cropped_box, valid_ids, axis=0)
                sample['gt_class'] = np.take(
                    sample['gt_class'], valid_ids, axis=0)
                if 'gt_score' in sample:
                    sample['gt_score'] = np.take(
                        sample['gt_score'], valid_ids, axis=0)

                if 'is_crowd' in sample:
                    sample['is_crowd'] = np.take(
                        sample['is_crowd'], valid_ids, axis=0)
1506 1507 1508 1509 1510

                if 'difficult' in sample:
                    sample['difficult'] = np.take(
                        sample['difficult'], valid_ids, axis=0)

Q
qingqing01 已提交
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
                return sample

        return sample

    def _iou_matrix(self, a, b):
        tl_i = np.maximum(a[:, np.newaxis, :2], b[:, :2])
        br_i = np.minimum(a[:, np.newaxis, 2:], b[:, 2:])

        area_i = np.prod(br_i - tl_i, axis=2) * (tl_i < br_i).all(axis=2)
        area_a = np.prod(a[:, 2:] - a[:, :2], axis=1)
        area_b = np.prod(b[:, 2:] - b[:, :2], axis=1)
        area_o = (area_a[:, np.newaxis] + area_b - area_i)
        return area_i / (area_o + 1e-10)

    def _crop_box_with_center_constraint(self, box, crop):
        cropped_box = box.copy()

        cropped_box[:, :2] = np.maximum(box[:, :2], crop[:2])
        cropped_box[:, 2:] = np.minimum(box[:, 2:], crop[2:])
        cropped_box[:, :2] -= crop[:2]
        cropped_box[:, 2:] -= crop[:2]

        centers = (box[:, :2] + box[:, 2:]) / 2
        valid = np.logical_and(crop[:2] <= centers,
                               centers < crop[2:]).all(axis=1)
        valid = np.logical_and(
            valid, (cropped_box[:, :2] < cropped_box[:, 2:]).all(axis=1))

        return cropped_box, np.where(valid)[0]

    def _crop_image(self, img, crop):
        x1, y1, x2, y2 = crop
        return img[y1:y2, x1:x2, :]

W
wangxinxin08 已提交
1545 1546 1547
    def _crop_segm(self, segm, crop):
        x1, y1, x2, y2 = crop
        return segm[:, y1:y2, x1:x2]
Q
qingqing01 已提交
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568


@register_op
class RandomScaledCrop(BaseOperator):
    """Resize image and bbox based on long side (with optional random scaling),
       then crop or pad image to target size.
    Args:
        target_dim (int): target size.
        scale_range (list): random scale range.
        interp (int): interpolation method, default to `cv2.INTER_LINEAR`.
    """

    def __init__(self,
                 target_dim=512,
                 scale_range=[.1, 2.],
                 interp=cv2.INTER_LINEAR):
        super(RandomScaledCrop, self).__init__()
        self.target_dim = target_dim
        self.scale_range = scale_range
        self.interp = interp

W
wangxinxin08 已提交
1569 1570 1571
    def apply(self, sample, context=None):
        img = sample['image']
        h, w = img.shape[:2]
Q
qingqing01 已提交
1572 1573 1574 1575 1576
        random_scale = np.random.uniform(*self.scale_range)
        dim = self.target_dim
        random_dim = int(dim * random_scale)
        dim_max = max(h, w)
        scale = random_dim / dim_max
W
wangxinxin08 已提交
1577 1578
        resize_w = w * scale
        resize_h = h * scale
Q
qingqing01 已提交
1579 1580
        offset_x = int(max(0, np.random.uniform(0., resize_w - dim)))
        offset_y = int(max(0, np.random.uniform(0., resize_h - dim)))
W
wangxinxin08 已提交
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593

        img = cv2.resize(img, (resize_w, resize_h), interpolation=self.interp)
        img = np.array(img)
        canvas = np.zeros((dim, dim, 3), dtype=img.dtype)
        canvas[:min(dim, resize_h), :min(dim, resize_w), :] = img[
            offset_y:offset_y + dim, offset_x:offset_x + dim, :]
        sample['image'] = canvas
        sample['im_shape'] = np.asarray([resize_h, resize_w], dtype=np.float32)
        scale_factor = sample['sacle_factor']
        sample['scale_factor'] = np.asarray(
            [scale_factor[0] * scale, scale_factor[1] * scale],
            dtype=np.float32)

Q
qingqing01 已提交
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
        if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
            scale_array = np.array([scale, scale] * 2, dtype=np.float32)
            shift_array = np.array([offset_x, offset_y] * 2, dtype=np.float32)
            boxes = sample['gt_bbox'] * scale_array - shift_array
            boxes = np.clip(boxes, 0, dim - 1)
            # filter boxes with no area
            area = np.prod(boxes[..., 2:] - boxes[..., :2], axis=1)
            valid = (area > 1.).nonzero()[0]
            sample['gt_bbox'] = boxes[valid]
            sample['gt_class'] = sample['gt_class'][valid]

        return sample


@register_op
W
wangxinxin08 已提交
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
class Cutmix(BaseOperator):
    def __init__(self, alpha=1.5, beta=1.5):
        """ 
        CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features, see https://arxiv.org/abs/1905.04899
        Cutmix image and gt_bbbox/gt_score
        Args:
             alpha (float): alpha parameter of beta distribute
             beta (float): beta parameter of beta distribute
        """
        super(Cutmix, self).__init__()
        self.alpha = alpha
        self.beta = beta
        if self.alpha <= 0.0:
            raise ValueError("alpha shold be positive in {}".format(self))
        if self.beta <= 0.0:
            raise ValueError("beta shold be positive in {}".format(self))
Q
qingqing01 已提交
1625

W
wangxinxin08 已提交
1626 1627 1628 1629 1630
    def apply_image(self, img1, img2, factor):
        """ _rand_bbox """
        h = max(img1.shape[0], img2.shape[0])
        w = max(img1.shape[1], img2.shape[1])
        cut_rat = np.sqrt(1. - factor)
Q
qingqing01 已提交
1631

1632 1633
        cut_w = np.int32(w * cut_rat)
        cut_h = np.int32(h * cut_rat)
W
wangxinxin08 已提交
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643

        # uniform
        cx = np.random.randint(w)
        cy = np.random.randint(h)

        bbx1 = np.clip(cx - cut_w // 2, 0, w - 1)
        bby1 = np.clip(cy - cut_h // 2, 0, h - 1)
        bbx2 = np.clip(cx + cut_w // 2, 0, w - 1)
        bby2 = np.clip(cy + cut_h // 2, 0, h - 1)

W
wangguanzhong 已提交
1644 1645
        img_1_pad = np.zeros((h, w, img1.shape[2]), 'float32')
        img_1_pad[:img1.shape[0], :img1.shape[1], :] = \
W
wangxinxin08 已提交
1646
            img1.astype('float32')
W
wangguanzhong 已提交
1647 1648
        img_2_pad = np.zeros((h, w, img2.shape[2]), 'float32')
        img_2_pad[:img2.shape[0], :img2.shape[1], :] = \
W
wangxinxin08 已提交
1649
            img2.astype('float32')
W
wangguanzhong 已提交
1650 1651
        img_1_pad[bby1:bby2, bbx1:bbx2, :] = img_2_pad[bby1:bby2, bbx1:bbx2, :]
        return img_1_pad
W
wangxinxin08 已提交
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673

    def __call__(self, sample, context=None):
        if not isinstance(sample, Sequence):
            return sample

        assert len(sample) == 2, 'cutmix need two samples'

        factor = np.random.beta(self.alpha, self.beta)
        factor = max(0.0, min(1.0, factor))
        if factor >= 1.0:
            return sample[0]
        if factor <= 0.0:
            return sample[1]
        img1 = sample[0]['image']
        img2 = sample[1]['image']
        img = self.apply_image(img1, img2, factor)
        gt_bbox1 = sample[0]['gt_bbox']
        gt_bbox2 = sample[1]['gt_bbox']
        gt_bbox = np.concatenate((gt_bbox1, gt_bbox2), axis=0)
        gt_class1 = sample[0]['gt_class']
        gt_class2 = sample[1]['gt_class']
        gt_class = np.concatenate((gt_class1, gt_class2), axis=0)
W
wangguanzhong 已提交
1674 1675
        gt_score1 = np.ones_like(sample[0]['gt_class'])
        gt_score2 = np.ones_like(sample[1]['gt_class'])
W
wangxinxin08 已提交
1676 1677
        gt_score = np.concatenate(
            (gt_score1 * factor, gt_score2 * (1. - factor)), axis=0)
W
wangguanzhong 已提交
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
        result = copy.deepcopy(sample[0])
        result['image'] = img
        result['gt_bbox'] = gt_bbox
        result['gt_score'] = gt_score
        result['gt_class'] = gt_class
        if 'is_crowd' in sample[0]:
            is_crowd1 = sample[0]['is_crowd']
            is_crowd2 = sample[1]['is_crowd']
            is_crowd = np.concatenate((is_crowd1, is_crowd2), axis=0)
            result['is_crowd'] = is_crowd
        if 'difficult' in sample[0]:
            is_difficult1 = sample[0]['difficult']
            is_difficult2 = sample[1]['difficult']
            is_difficult = np.concatenate(
                (is_difficult1, is_difficult2), axis=0)
            result['difficult'] = is_difficult
        return result
Q
qingqing01 已提交
1695 1696 1697


@register_op
W
wangxinxin08 已提交
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
class Mixup(BaseOperator):
    def __init__(self, alpha=1.5, beta=1.5):
        """ Mixup image and gt_bbbox/gt_score
        Args:
            alpha (float): alpha parameter of beta distribute
            beta (float): beta parameter of beta distribute
        """
        super(Mixup, self).__init__()
        self.alpha = alpha
        self.beta = beta
        if self.alpha <= 0.0:
            raise ValueError("alpha shold be positive in {}".format(self))
        if self.beta <= 0.0:
            raise ValueError("beta shold be positive in {}".format(self))
Q
qingqing01 已提交
1712

W
wangxinxin08 已提交
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
    def apply_image(self, img1, img2, factor):
        h = max(img1.shape[0], img2.shape[0])
        w = max(img1.shape[1], img2.shape[1])
        img = np.zeros((h, w, img1.shape[2]), 'float32')
        img[:img1.shape[0], :img1.shape[1], :] = \
            img1.astype('float32') * factor
        img[:img2.shape[0], :img2.shape[1], :] += \
            img2.astype('float32') * (1.0 - factor)
        return img.astype('uint8')

    def __call__(self, sample, context=None):
        if not isinstance(sample, Sequence):
Q
qingqing01 已提交
1725 1726
            return sample

W
wangxinxin08 已提交
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
        assert len(sample) == 2, 'mixup need two samples'

        factor = np.random.beta(self.alpha, self.beta)
        factor = max(0.0, min(1.0, factor))
        if factor >= 1.0:
            return sample[0]
        if factor <= 0.0:
            return sample[1]
        im = self.apply_image(sample[0]['image'], sample[1]['image'], factor)
        result = copy.deepcopy(sample[0])
        result['image'] = im
        # apply bbox and score
        if 'gt_bbox' in sample[0]:
            gt_bbox1 = sample[0]['gt_bbox']
            gt_bbox2 = sample[1]['gt_bbox']
            gt_bbox = np.concatenate((gt_bbox1, gt_bbox2), axis=0)
            result['gt_bbox'] = gt_bbox
        if 'gt_class' in sample[0]:
            gt_class1 = sample[0]['gt_class']
            gt_class2 = sample[1]['gt_class']
            gt_class = np.concatenate((gt_class1, gt_class2), axis=0)
            result['gt_class'] = gt_class

            gt_score1 = np.ones_like(sample[0]['gt_class'])
            gt_score2 = np.ones_like(sample[1]['gt_class'])
            gt_score = np.concatenate(
                (gt_score1 * factor, gt_score2 * (1. - factor)), axis=0)
S
shangliang Xu 已提交
1754
            result['gt_score'] = gt_score.astype('float32')
W
wangxinxin08 已提交
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
        if 'is_crowd' in sample[0]:
            is_crowd1 = sample[0]['is_crowd']
            is_crowd2 = sample[1]['is_crowd']
            is_crowd = np.concatenate((is_crowd1, is_crowd2), axis=0)
            result['is_crowd'] = is_crowd
        if 'difficult' in sample[0]:
            is_difficult1 = sample[0]['difficult']
            is_difficult2 = sample[1]['difficult']
            is_difficult = np.concatenate(
                (is_difficult1, is_difficult2), axis=0)
            result['difficult'] = is_difficult

G
George Ni 已提交
1767 1768 1769 1770 1771
        if 'gt_ide' in sample[0]:
            gt_ide1 = sample[0]['gt_ide']
            gt_ide2 = sample[1]['gt_ide']
            gt_ide = np.concatenate((gt_ide1, gt_ide2), axis=0)
            result['gt_ide'] = gt_ide
W
wangxinxin08 已提交
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
        return result


@register_op
class NormalizeBox(BaseOperator):
    """Transform the bounding box's coornidates to [0,1]."""

    def __init__(self):
        super(NormalizeBox, self).__init__()

    def apply(self, sample, context):
        im = sample['image']
        gt_bbox = sample['gt_bbox']
        height, width, _ = im.shape
        for i in range(gt_bbox.shape[0]):
            gt_bbox[i][0] = gt_bbox[i][0] / width
            gt_bbox[i][1] = gt_bbox[i][1] / height
            gt_bbox[i][2] = gt_bbox[i][2] / width
            gt_bbox[i][3] = gt_bbox[i][3] / height
        sample['gt_bbox'] = gt_bbox

        if 'gt_keypoint' in sample.keys():
            gt_keypoint = sample['gt_keypoint']

            for i in range(gt_keypoint.shape[1]):
                if i % 2:
                    gt_keypoint[:, i] = gt_keypoint[:, i] / height
                else:
                    gt_keypoint[:, i] = gt_keypoint[:, i] / width
            sample['gt_keypoint'] = gt_keypoint

        return sample


@register_op
class BboxXYXY2XYWH(BaseOperator):
    """
    Convert bbox XYXY format to XYWH format.
    """

    def __init__(self):
        super(BboxXYXY2XYWH, self).__init__()

    def apply(self, sample, context=None):
        assert 'gt_bbox' in sample
        bbox = sample['gt_bbox']
        bbox[:, 2:4] = bbox[:, 2:4] - bbox[:, :2]
        bbox[:, :2] = bbox[:, :2] + bbox[:, 2:4] / 2.
        sample['gt_bbox'] = bbox
        return sample


@register_op
class PadBox(BaseOperator):
    def __init__(self, num_max_boxes=50):
        """
        Pad zeros to bboxes if number of bboxes is less than num_max_boxes.
        Args:
            num_max_boxes (int): the max number of bboxes
        """
        self.num_max_boxes = num_max_boxes
        super(PadBox, self).__init__()
Q
qingqing01 已提交
1834

W
wangxinxin08 已提交
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
    def apply(self, sample, context=None):
        assert 'gt_bbox' in sample
        bbox = sample['gt_bbox']
        gt_num = min(self.num_max_boxes, len(bbox))
        num_max = self.num_max_boxes
        # fields = context['fields'] if context else []
        pad_bbox = np.zeros((num_max, 4), dtype=np.float32)
        if gt_num > 0:
            pad_bbox[:gt_num, :] = bbox[:gt_num, :]
        sample['gt_bbox'] = pad_bbox
        if 'gt_class' in sample:
            pad_class = np.zeros((num_max, ), dtype=np.int32)
            if gt_num > 0:
                pad_class[:gt_num] = sample['gt_class'][:gt_num, 0]
            sample['gt_class'] = pad_class
        if 'gt_score' in sample:
            pad_score = np.zeros((num_max, ), dtype=np.float32)
            if gt_num > 0:
                pad_score[:gt_num] = sample['gt_score'][:gt_num, 0]
            sample['gt_score'] = pad_score
        # in training, for example in op ExpandImage,
        # the bbox and gt_class is expandded, but the difficult is not,
        # so, judging by it's length
        if 'difficult' in sample:
            pad_diff = np.zeros((num_max, ), dtype=np.int32)
            if gt_num > 0:
                pad_diff[:gt_num] = sample['difficult'][:gt_num, 0]
            sample['difficult'] = pad_diff
        if 'is_crowd' in sample:
            pad_crowd = np.zeros((num_max, ), dtype=np.int32)
            if gt_num > 0:
                pad_crowd[:gt_num] = sample['is_crowd'][:gt_num, 0]
            sample['is_crowd'] = pad_crowd
G
George Ni 已提交
1868 1869 1870 1871 1872
        if 'gt_ide' in sample:
            pad_ide = np.zeros((num_max, ), dtype=np.int32)
            if gt_num > 0:
                pad_ide[:gt_num] = sample['gt_ide'][:gt_num, 0]
            sample['gt_ide'] = pad_ide
Q
qingqing01 已提交
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
        return sample


@register_op
class DebugVisibleImage(BaseOperator):
    """
    In debug mode, visualize images according to `gt_box`.
    (Currently only supported when not cropping and flipping image.)
    """

    def __init__(self, output_dir='output/debug', is_normalized=False):
        super(DebugVisibleImage, self).__init__()
        self.is_normalized = is_normalized
        self.output_dir = output_dir
        if not os.path.isdir(output_dir):
            os.makedirs(output_dir)
        if not isinstance(self.is_normalized, bool):
            raise TypeError("{}: input type is invalid.".format(self))

W
wangxinxin08 已提交
1892
    def apply(self, sample, context=None):
1893 1894
        image = Image.fromarray(sample['image'].astype(np.uint8))
        out_file_name = '{:012d}.jpg'.format(sample['im_id'][0])
Q
qingqing01 已提交
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
        width = sample['w']
        height = sample['h']
        gt_bbox = sample['gt_bbox']
        gt_class = sample['gt_class']
        draw = ImageDraw.Draw(image)
        for i in range(gt_bbox.shape[0]):
            if self.is_normalized:
                gt_bbox[i][0] = gt_bbox[i][0] * width
                gt_bbox[i][1] = gt_bbox[i][1] * height
                gt_bbox[i][2] = gt_bbox[i][2] * width
                gt_bbox[i][3] = gt_bbox[i][3] * height

            xmin, ymin, xmax, ymax = gt_bbox[i]
            draw.line(
                [(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin),
                 (xmin, ymin)],
                width=2,
                fill='green')
            # draw label
            text = str(gt_class[i][0])
            tw, th = draw.textsize(text)
            draw.rectangle(
                [(xmin + 1, ymin - th), (xmin + tw + 1, ymin)], fill='green')
            draw.text((xmin + 1, ymin - th), text, fill=(255, 255, 255))

        if 'gt_keypoint' in sample.keys():
            gt_keypoint = sample['gt_keypoint']
            if self.is_normalized:
                for i in range(gt_keypoint.shape[1]):
                    if i % 2:
                        gt_keypoint[:, i] = gt_keypoint[:, i] * height
                    else:
                        gt_keypoint[:, i] = gt_keypoint[:, i] * width
            for i in range(gt_keypoint.shape[0]):
                keypoint = gt_keypoint[i]
                for j in range(int(keypoint.shape[0] / 2)):
                    x1 = round(keypoint[2 * j]).astype(np.int32)
                    y1 = round(keypoint[2 * j + 1]).astype(np.int32)
                    draw.ellipse(
W
wangxinxin08 已提交
1934
                        (x1, y1, x1 + 5, y1 + 5), fill='green', outline='green')
Q
qingqing01 已提交
1935 1936 1937
        save_path = os.path.join(self.output_dir, out_file_name)
        image.save(save_path, quality=95)
        return sample
W
wangxinxin08 已提交
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948


@register_op
class Pad(BaseOperator):
    def __init__(self,
                 size=None,
                 size_divisor=32,
                 pad_mode=0,
                 offsets=None,
                 fill_value=(127.5, 127.5, 127.5)):
        """
1949
        Pad image to a specified size or multiple of size_divisor.
W
wangxinxin08 已提交
1950 1951 1952 1953 1954
        Args:
            size (int, Sequence): image target size, if None, pad to multiple of size_divisor, default None
            size_divisor (int): size divisor, default 32
            pad_mode (int): pad mode, currently only supports four modes [-1, 0, 1, 2]. if -1, use specified offsets
                if 0, only pad to right and bottom. if 1, pad according to center. if 2, only pad left and top
1955
            offsets (list): [offset_x, offset_y], specify offset while padding, only supported pad_mode=-1
W
wangxinxin08 已提交
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
            fill_value (bool): rgb value of pad area, default (127.5, 127.5, 127.5)
        """
        super(Pad, self).__init__()

        if not isinstance(size, (int, Sequence)):
            raise TypeError(
                "Type of target_size is invalid when random_size is True. \
                            Must be List, now is {}".format(type(size)))

        if isinstance(size, int):
            size = [size, size]

        assert pad_mode in [
            -1, 0, 1, 2
        ], 'currently only supports four modes [-1, 0, 1, 2]'
W
will-jl944 已提交
1971 1972
        if pad_mode == -1:
            assert offsets, 'if pad_mode is -1, offsets should not be None'
W
wangxinxin08 已提交
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035

        self.size = size
        self.size_divisor = size_divisor
        self.pad_mode = pad_mode
        self.fill_value = fill_value
        self.offsets = offsets

    def apply_segm(self, segms, offsets, im_size, size):
        def _expand_poly(poly, x, y):
            expanded_poly = np.array(poly)
            expanded_poly[0::2] += x
            expanded_poly[1::2] += y
            return expanded_poly.tolist()

        def _expand_rle(rle, x, y, height, width, h, w):
            if 'counts' in rle and type(rle['counts']) == list:
                rle = mask_util.frPyObjects(rle, height, width)
            mask = mask_util.decode(rle)
            expanded_mask = np.full((h, w), 0).astype(mask.dtype)
            expanded_mask[y:y + height, x:x + width] = mask
            rle = mask_util.encode(
                np.array(
                    expanded_mask, order='F', dtype=np.uint8))
            return rle

        x, y = offsets
        height, width = im_size
        h, w = size
        expanded_segms = []
        for segm in segms:
            if is_poly(segm):
                # Polygon format
                expanded_segms.append(
                    [_expand_poly(poly, x, y) for poly in segm])
            else:
                # RLE format
                import pycocotools.mask as mask_util
                expanded_segms.append(
                    _expand_rle(segm, x, y, height, width, h, w))
        return expanded_segms

    def apply_bbox(self, bbox, offsets):
        return bbox + np.array(offsets * 2, dtype=np.float32)

    def apply_keypoint(self, keypoints, offsets):
        n = len(keypoints[0]) // 2
        return keypoints + np.array(offsets * n, dtype=np.float32)

    def apply_image(self, image, offsets, im_size, size):
        x, y = offsets
        im_h, im_w = im_size
        h, w = size
        canvas = np.ones((h, w, 3), dtype=np.float32)
        canvas *= np.array(self.fill_value, dtype=np.float32)
        canvas[y:y + im_h, x:x + im_w, :] = image.astype(np.float32)
        return canvas

    def apply(self, sample, context=None):
        im = sample['image']
        im_h, im_w = im.shape[:2]
        if self.size:
            h, w = self.size
            assert (
F
Feng Ni 已提交
2036
                im_h <= h and im_w <= w
W
wangxinxin08 已提交
2037 2038
            ), '(h, w) of target size should be greater than (im_h, im_w)'
        else:
U
ucsk 已提交
2039 2040
            h = int(np.ceil(im_h / self.size_divisor) * self.size_divisor)
            w = int(np.ceil(im_w / self.size_divisor) * self.size_divisor)
W
wangxinxin08 已提交
2041 2042

        if h == im_h and w == im_w:
F
Feng Ni 已提交
2043
            sample['image'] = im.astype(np.float32)
W
wangxinxin08 已提交
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
            return sample

        if self.pad_mode == -1:
            offset_x, offset_y = self.offsets
        elif self.pad_mode == 0:
            offset_y, offset_x = 0, 0
        elif self.pad_mode == 1:
            offset_y, offset_x = (h - im_h) // 2, (w - im_w) // 2
        else:
            offset_y, offset_x = h - im_h, w - im_w

        offsets, im_size, size = [offset_x, offset_y], [im_h, im_w], [h, w]

        sample['image'] = self.apply_image(im, offsets, im_size, size)

        if self.pad_mode == 0:
            return sample
        if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
            sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], offsets)

        if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
            sample['gt_poly'] = self.apply_segm(sample['gt_poly'], offsets,
                                                im_size, size)

        if 'gt_keypoint' in sample and len(sample['gt_keypoint']) > 0:
            sample['gt_keypoint'] = self.apply_keypoint(sample['gt_keypoint'],
                                                        offsets)

        return sample


@register_op
class Poly2Mask(BaseOperator):
    """
    gt poly to mask annotations
    """

    def __init__(self):
        super(Poly2Mask, self).__init__()
        import pycocotools.mask as maskUtils
        self.maskutils = maskUtils

    def _poly2mask(self, mask_ann, img_h, img_w):
        if isinstance(mask_ann, list):
            # polygon -- a single object might consist of multiple parts
            # we merge all parts into one mask rle code
            rles = self.maskutils.frPyObjects(mask_ann, img_h, img_w)
            rle = self.maskutils.merge(rles)
        elif isinstance(mask_ann['counts'], list):
            # uncompressed RLE
            rle = self.maskutils.frPyObjects(mask_ann, img_h, img_w)
        else:
            # rle
            rle = mask_ann
        mask = self.maskutils.decode(rle)
        return mask

    def apply(self, sample, context=None):
        assert 'gt_poly' in sample
        im_h = sample['h']
        im_w = sample['w']
        masks = [
            self._poly2mask(gt_poly, im_h, im_w)
            for gt_poly in sample['gt_poly']
        ]
        sample['gt_segm'] = np.asarray(masks).astype(np.uint8)
        return sample
C
cnn 已提交
2111 2112


G
George Ni 已提交
2113 2114
@register_op
class AugmentHSV(BaseOperator):
F
Feng Ni 已提交
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
    """ 
    Augment the SV channel of image data.
    Args:
        fraction (float): the fraction for augment. Default: 0.5.
        is_bgr (bool): whether the image is BGR mode. Default: True.
        hgain (float): H channel gains
        sgain (float): S channel gains
        vgain (float): V channel gains
    """

    def __init__(self,
                 fraction=0.50,
                 is_bgr=True,
                 hgain=None,
                 sgain=None,
                 vgain=None):
G
George Ni 已提交
2131 2132 2133
        super(AugmentHSV, self).__init__()
        self.fraction = fraction
        self.is_bgr = is_bgr
F
Feng Ni 已提交
2134 2135 2136 2137
        self.hgain = hgain
        self.sgain = sgain
        self.vgain = vgain
        self.use_hsvgain = False if hgain is None else True
G
George Ni 已提交
2138 2139 2140 2141 2142 2143 2144 2145

    def apply(self, sample, context=None):
        img = sample['image']
        if self.is_bgr:
            img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
        else:
            img_hsv = cv2.cvtColor(img, cv2.COLOR_RGB2HSV)

F
Feng Ni 已提交
2146 2147 2148 2149 2150 2151 2152 2153
        if self.use_hsvgain:
            hsv_augs = np.random.uniform(
                -1, 1, 3) * [self.hgain, self.sgain, self.vgain]
            # random selection of h, s, v
            hsv_augs *= np.random.randint(0, 2, 3)
            img_hsv[..., 0] = (img_hsv[..., 0] + hsv_augs[0]) % 180
            img_hsv[..., 1] = np.clip(img_hsv[..., 1] + hsv_augs[1], 0, 255)
            img_hsv[..., 2] = np.clip(img_hsv[..., 2] + hsv_augs[2], 0, 255)
G
George Ni 已提交
2154

F
Feng Ni 已提交
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
        else:
            S = img_hsv[:, :, 1].astype(np.float32)
            V = img_hsv[:, :, 2].astype(np.float32)

            a = (random.random() * 2 - 1) * self.fraction + 1
            S *= a
            if a > 1:
                np.clip(S, a_min=0, a_max=255, out=S)

            a = (random.random() * 2 - 1) * self.fraction + 1
            V *= a
            if a > 1:
                np.clip(V, a_min=0, a_max=255, out=V)

            img_hsv[:, :, 1] = S.astype(np.uint8)
            img_hsv[:, :, 2] = V.astype(np.uint8)
G
George Ni 已提交
2171 2172 2173 2174 2175 2176

        if self.is_bgr:
            cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img)
        else:
            cv2.cvtColor(img_hsv, cv2.COLOR_HSV2RGB, dst=img)

G
Guanghua Yu 已提交
2177
        sample['image'] = img.astype(np.float32)
G
George Ni 已提交
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
        return sample


@register_op
class Norm2PixelBbox(BaseOperator):
    """
    Transform the bounding box's coornidates which is in [0,1] to pixels.
    """

    def __init__(self):
        super(Norm2PixelBbox, self).__init__()

    def apply(self, sample, context=None):
        assert 'gt_bbox' in sample
        bbox = sample['gt_bbox']
        height, width = sample['image'].shape[:2]
        bbox[:, 0::2] = bbox[:, 0::2] * width
        bbox[:, 1::2] = bbox[:, 1::2] * height
        sample['gt_bbox'] = bbox
        return sample


@register_op
class BboxCXCYWH2XYXY(BaseOperator):
    """
    Convert bbox CXCYWH format to XYXY format.
    [center_x, center_y, width, height] -> [x0, y0, x1, y1]
    """

    def __init__(self):
        super(BboxCXCYWH2XYXY, self).__init__()

    def apply(self, sample, context=None):
        assert 'gt_bbox' in sample
        bbox0 = sample['gt_bbox']
        bbox = bbox0.copy()

        bbox[:, :2] = bbox0[:, :2] - bbox0[:, 2:4] / 2.
        bbox[:, 2:4] = bbox0[:, :2] + bbox0[:, 2:4] / 2.
        sample['gt_bbox'] = bbox
        return sample
W
Wenyu 已提交
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462


@register_op
class RandomResizeCrop(BaseOperator):
    """Random resize and crop image and bboxes.
    Args:
        resizes (list): resize image to one of resizes. if keep_ratio is True and mode is
        'long', resize the image's long side to the maximum of target_size, if keep_ratio is
        True and mode is 'short', resize the image's short side to the minimum of target_size.
        cropsizes (list): crop sizes after resize, [(min_crop_1, max_crop_1), ...]
        mode (str): resize mode, `long` or `short`. Details see resizes. 
        prob (float): probability of this op.
        keep_ratio (bool): whether keep_ratio or not, default true
        interp (int): the interpolation method
        thresholds (list): iou thresholds for decide a valid bbox crop.
        num_attempts (int): number of tries before giving up.
        allow_no_crop (bool): allow return without actually cropping them.
        cover_all_box (bool): ensure all bboxes are covered in the final crop.
        is_mask_crop(bool): whether crop the segmentation.
    """

    def __init__(
            self,
            resizes,
            cropsizes,
            prob=0.5,
            mode='short',
            keep_ratio=True,
            interp=cv2.INTER_LINEAR,
            num_attempts=3,
            cover_all_box=False,
            allow_no_crop=False,
            thresholds=[0.3, 0.5, 0.7],
            is_mask_crop=False, ):
        super(RandomResizeCrop, self).__init__()

        self.resizes = resizes
        self.cropsizes = cropsizes
        self.prob = prob
        self.mode = mode

        self.resizer = Resize(0, keep_ratio=keep_ratio, interp=interp)
        self.croper = RandomCrop(
            num_attempts=num_attempts,
            cover_all_box=cover_all_box,
            thresholds=thresholds,
            allow_no_crop=allow_no_crop,
            is_mask_crop=is_mask_crop)

    def _format_size(self, size):
        if isinstance(size, Integral):
            size = (size, size)
        return size

    def apply(self, sample, context=None):
        if random.random() < self.prob:
            _resize = self._format_size(random.choice(self.resizes))
            _cropsize = self._format_size(random.choice(self.cropsizes))
            sample = self._resize(
                self.resizer,
                sample,
                size=_resize,
                mode=self.mode,
                context=context)
            sample = self._random_crop(
                self.croper, sample, size=_cropsize, context=context)
        return sample

    @staticmethod
    def _random_crop(croper, sample, size, context=None):
        if 'gt_bbox' in sample and len(sample['gt_bbox']) == 0:
            return sample

        self = croper
        h, w = sample['image'].shape[:2]
        gt_bbox = sample['gt_bbox']
        cropsize = size
        min_crop = min(cropsize)
        max_crop = max(cropsize)

        thresholds = list(self.thresholds)
        np.random.shuffle(thresholds)

        for thresh in thresholds:
            found = False
            for _ in range(self.num_attempts):

                crop_h = random.randint(min_crop, min(h, max_crop))
                crop_w = random.randint(min_crop, min(w, max_crop))

                crop_y = random.randint(0, h - crop_h)
                crop_x = random.randint(0, w - crop_w)

                crop_box = [crop_x, crop_y, crop_x + crop_w, crop_y + crop_h]
                iou = self._iou_matrix(
                    gt_bbox, np.array(
                        [crop_box], dtype=np.float32))
                if iou.max() < thresh:
                    continue

                if self.cover_all_box and iou.min() < thresh:
                    continue

                cropped_box, valid_ids = self._crop_box_with_center_constraint(
                    gt_bbox, np.array(
                        crop_box, dtype=np.float32))
                if valid_ids.size > 0:
                    found = True
                    break

            if found:
                if self.is_mask_crop and 'gt_poly' in sample and len(sample[
                        'gt_poly']) > 0:
                    crop_polys = self.crop_segms(
                        sample['gt_poly'],
                        valid_ids,
                        np.array(
                            crop_box, dtype=np.int64),
                        h,
                        w)
                    if [] in crop_polys:
                        delete_id = list()
                        valid_polys = list()
                        for id, crop_poly in enumerate(crop_polys):
                            if crop_poly == []:
                                delete_id.append(id)
                            else:
                                valid_polys.append(crop_poly)
                        valid_ids = np.delete(valid_ids, delete_id)
                        if len(valid_polys) == 0:
                            return sample
                        sample['gt_poly'] = valid_polys
                    else:
                        sample['gt_poly'] = crop_polys

                if 'gt_segm' in sample:
                    sample['gt_segm'] = self._crop_segm(sample['gt_segm'],
                                                        crop_box)
                    sample['gt_segm'] = np.take(
                        sample['gt_segm'], valid_ids, axis=0)

                sample['image'] = self._crop_image(sample['image'], crop_box)
                sample['gt_bbox'] = np.take(cropped_box, valid_ids, axis=0)
                sample['gt_class'] = np.take(
                    sample['gt_class'], valid_ids, axis=0)
                if 'gt_score' in sample:
                    sample['gt_score'] = np.take(
                        sample['gt_score'], valid_ids, axis=0)

                if 'is_crowd' in sample:
                    sample['is_crowd'] = np.take(
                        sample['is_crowd'], valid_ids, axis=0)
                return sample

        return sample

    @staticmethod
    def _resize(resizer, sample, size, mode='short', context=None):
        self = resizer
        im = sample['image']
        target_size = size

        if not isinstance(im, np.ndarray):
            raise TypeError("{}: image type is not numpy.".format(self))
        if len(im.shape) != 3:
            raise ImageError('{}: image is not 3-dimensional.'.format(self))

        # apply image
        im_shape = im.shape
        if self.keep_ratio:

            im_size_min = np.min(im_shape[0:2])
            im_size_max = np.max(im_shape[0:2])

            target_size_min = np.min(target_size)
            target_size_max = np.max(target_size)

            if mode == 'long':
                im_scale = min(target_size_min / im_size_min,
                               target_size_max / im_size_max)
            else:
                im_scale = max(target_size_min / im_size_min,
                               target_size_max / im_size_max)

            resize_h = im_scale * float(im_shape[0])
            resize_w = im_scale * float(im_shape[1])

            im_scale_x = im_scale
            im_scale_y = im_scale
        else:
            resize_h, resize_w = target_size
            im_scale_y = resize_h / im_shape[0]
            im_scale_x = resize_w / im_shape[1]

        im = self.apply_image(sample['image'], [im_scale_x, im_scale_y])
        sample['image'] = im
        sample['im_shape'] = np.asarray([resize_h, resize_w], dtype=np.float32)
        if 'scale_factor' in sample:
            scale_factor = sample['scale_factor']
            sample['scale_factor'] = np.asarray(
                [scale_factor[0] * im_scale_y, scale_factor[1] * im_scale_x],
                dtype=np.float32)
        else:
            sample['scale_factor'] = np.asarray(
                [im_scale_y, im_scale_x], dtype=np.float32)

        # apply bbox
        if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
            sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'],
                                                [im_scale_x, im_scale_y],
                                                [resize_w, resize_h])

        # apply polygon
        if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
            sample['gt_poly'] = self.apply_segm(sample['gt_poly'], im_shape[:2],
                                                [im_scale_x, im_scale_y])

        # apply semantic
        if 'semantic' in sample and sample['semantic']:
            semantic = sample['semantic']
            semantic = cv2.resize(
                semantic.astype('float32'),
                None,
                None,
                fx=im_scale_x,
                fy=im_scale_y,
                interpolation=self.interp)
            semantic = np.asarray(semantic).astype('int32')
            semantic = np.expand_dims(semantic, 0)
            sample['semantic'] = semantic

        # apply gt_segm
        if 'gt_segm' in sample and len(sample['gt_segm']) > 0:
            masks = [
                cv2.resize(
                    gt_segm,
                    None,
                    None,
                    fx=im_scale_x,
                    fy=im_scale_y,
                    interpolation=cv2.INTER_NEAREST)
                for gt_segm in sample['gt_segm']
            ]
            sample['gt_segm'] = np.asarray(masks).astype(np.uint8)
2463

2464 2465 2466
        return sample


2467 2468 2469 2470 2471
@register_op
class RandomSelect(BaseOperator):
    """
    Randomly choose a transformation between transforms1 and transforms2,
    and the probability of choosing transforms1 is p.
2472 2473 2474

    The code is based on https://github.com/facebookresearch/detr/blob/main/datasets/transforms.py

2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
    """

    def __init__(self, transforms1, transforms2, p=0.5):
        super(RandomSelect, self).__init__()
        self.transforms1 = Compose(transforms1)
        self.transforms2 = Compose(transforms2)
        self.p = p

    def apply(self, sample, context=None):
        if random.random() < self.p:
            return self.transforms1(sample)
        return self.transforms2(sample)


@register_op
class RandomShortSideResize(BaseOperator):
    def __init__(self,
                 short_side_sizes,
                 max_size=None,
                 interp=cv2.INTER_LINEAR,
                 random_interp=False):
        """
        Resize the image randomly according to the short side. If max_size is not None,
        the long side is scaled according to max_size. The whole process will be keep ratio.
        Args:
            short_side_sizes (list|tuple): Image target short side size.
            max_size (int): The size of the longest side of image after resize.
            interp (int): The interpolation method.
            random_interp (bool): Whether random select interpolation method.
        """
        super(RandomShortSideResize, self).__init__()

        assert isinstance(short_side_sizes,
                          Sequence), "short_side_sizes must be List or Tuple"

        self.short_side_sizes = short_side_sizes
        self.max_size = max_size
        self.interp = interp
        self.random_interp = random_interp
        self.interps = [
            cv2.INTER_NEAREST,
            cv2.INTER_LINEAR,
            cv2.INTER_AREA,
            cv2.INTER_CUBIC,
            cv2.INTER_LANCZOS4,
        ]

    def get_size_with_aspect_ratio(self, image_shape, size, max_size=None):
        h, w = image_shape
        if max_size is not None:
            min_original_size = float(min((w, h)))
            max_original_size = float(max((w, h)))
            if max_original_size / min_original_size * size > max_size:
                size = int(
                    round(max_size * min_original_size / max_original_size))

        if (w <= h and w == size) or (h <= w and h == size):
            return (w, h)

        if w < h:
            ow = size
            oh = int(size * h / w)
        else:
            oh = size
            ow = int(size * w / h)

        return (ow, oh)

    def resize(self,
               sample,
               target_size,
               max_size=None,
               interp=cv2.INTER_LINEAR):
        im = sample['image']
        if not isinstance(im, np.ndarray):
            raise TypeError("{}: image type is not numpy.".format(self))
        if len(im.shape) != 3:
            raise ImageError('{}: image is not 3-dimensional.'.format(self))

        target_size = self.get_size_with_aspect_ratio(im.shape[:2], target_size,
                                                      max_size)
        im_scale_y, im_scale_x = target_size[1] / im.shape[0], target_size[
            0] / im.shape[1]

        sample['image'] = cv2.resize(im, target_size, interpolation=interp)
        sample['im_shape'] = np.asarray(target_size[::-1], dtype=np.float32)
        if 'scale_factor' in sample:
            scale_factor = sample['scale_factor']
            sample['scale_factor'] = np.asarray(
                [scale_factor[0] * im_scale_y, scale_factor[1] * im_scale_x],
                dtype=np.float32)
        else:
            sample['scale_factor'] = np.asarray(
                [im_scale_y, im_scale_x], dtype=np.float32)

        # apply bbox
        if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
            sample['gt_bbox'] = self.apply_bbox(
                sample['gt_bbox'], [im_scale_x, im_scale_y], target_size)
        # apply polygon
        if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
            sample['gt_poly'] = self.apply_segm(sample['gt_poly'], im.shape[:2],
                                                [im_scale_x, im_scale_y])
        # apply semantic
        if 'semantic' in sample and sample['semantic']:
            semantic = sample['semantic']
            semantic = cv2.resize(
                semantic.astype('float32'),
                target_size,
                interpolation=self.interp)
            semantic = np.asarray(semantic).astype('int32')
            semantic = np.expand_dims(semantic, 0)
            sample['semantic'] = semantic
        # apply gt_segm
        if 'gt_segm' in sample and len(sample['gt_segm']) > 0:
            masks = [
                cv2.resize(
                    gt_segm, target_size, interpolation=cv2.INTER_NEAREST)
                for gt_segm in sample['gt_segm']
            ]
            sample['gt_segm'] = np.asarray(masks).astype(np.uint8)
        return sample

    def apply_bbox(self, bbox, scale, size):
        im_scale_x, im_scale_y = scale
        resize_w, resize_h = size
        bbox[:, 0::2] *= im_scale_x
        bbox[:, 1::2] *= im_scale_y
        bbox[:, 0::2] = np.clip(bbox[:, 0::2], 0, resize_w)
        bbox[:, 1::2] = np.clip(bbox[:, 1::2], 0, resize_h)
        return bbox.astype('float32')

    def apply_segm(self, segms, im_size, scale):
        def _resize_poly(poly, im_scale_x, im_scale_y):
            resized_poly = np.array(poly).astype('float32')
            resized_poly[0::2] *= im_scale_x
            resized_poly[1::2] *= im_scale_y
            return resized_poly.tolist()

        def _resize_rle(rle, im_h, im_w, im_scale_x, im_scale_y):
            if 'counts' in rle and type(rle['counts']) == list:
                rle = mask_util.frPyObjects(rle, im_h, im_w)

            mask = mask_util.decode(rle)
            mask = cv2.resize(
                mask,
                None,
                None,
                fx=im_scale_x,
                fy=im_scale_y,
                interpolation=self.interp)
            rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8))
            return rle

        im_h, im_w = im_size
        im_scale_x, im_scale_y = scale
        resized_segms = []
        for segm in segms:
            if is_poly(segm):
                # Polygon format
                resized_segms.append([
                    _resize_poly(poly, im_scale_x, im_scale_y) for poly in segm
                ])
            else:
                # RLE format
                import pycocotools.mask as mask_util
                resized_segms.append(
                    _resize_rle(segm, im_h, im_w, im_scale_x, im_scale_y))

        return resized_segms

    def apply(self, sample, context=None):
        target_size = random.choice(self.short_side_sizes)
        interp = random.choice(
            self.interps) if self.random_interp else self.interp

        return self.resize(sample, target_size, self.max_size, interp)


@register_op
class RandomSizeCrop(BaseOperator):
    """
    Cut the image randomly according to `min_size` and `max_size`
    """

    def __init__(self, min_size, max_size):
        super(RandomSizeCrop, self).__init__()
        self.min_size = min_size
        self.max_size = max_size

        from paddle.vision.transforms.functional import crop as paddle_crop
        self.paddle_crop = paddle_crop

    @staticmethod
    def get_crop_params(img_shape, output_size):
        """Get parameters for ``crop`` for a random crop.
        Args:
            img_shape (list|tuple): Image's height and width.
            output_size (list|tuple): Expected output size of the crop.
        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
        """
        h, w = img_shape
        th, tw = output_size

        if h + 1 < th or w + 1 < tw:
            raise ValueError(
                "Required crop size {} is larger then input image size {}".
                format((th, tw), (h, w)))

        if w == tw and h == th:
            return 0, 0, h, w

        i = random.randint(0, h - th + 1)
        j = random.randint(0, w - tw + 1)
        return i, j, th, tw

    def crop(self, sample, region):
        image_shape = sample['image'].shape[:2]
        sample['image'] = self.paddle_crop(sample['image'], *region)

        keep_index = None
        # apply bbox
        if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
            sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], region)
            bbox = sample['gt_bbox'].reshape([-1, 2, 2])
            area = (bbox[:, 1, :] - bbox[:, 0, :]).prod(axis=1)
            keep_index = np.where(area > 0)[0]
            sample['gt_bbox'] = sample['gt_bbox'][keep_index] if len(
                keep_index) > 0 else np.zeros(
                    [0, 4], dtype=np.float32)
            sample['gt_class'] = sample['gt_class'][keep_index] if len(
                keep_index) > 0 else np.zeros(
                    [0, 1], dtype=np.float32)
            if 'gt_score' in sample:
                sample['gt_score'] = sample['gt_score'][keep_index] if len(
                    keep_index) > 0 else np.zeros(
                        [0, 1], dtype=np.float32)
            if 'is_crowd' in sample:
                sample['is_crowd'] = sample['is_crowd'][keep_index] if len(
                    keep_index) > 0 else np.zeros(
                        [0, 1], dtype=np.float32)

        # apply polygon
        if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
            sample['gt_poly'] = self.apply_segm(sample['gt_poly'], region,
                                                image_shape)
            if keep_index is not None:
                sample['gt_poly'] = sample['gt_poly'][keep_index]
        # apply gt_segm
        if 'gt_segm' in sample and len(sample['gt_segm']) > 0:
            i, j, h, w = region
            sample['gt_segm'] = sample['gt_segm'][:, i:i + h, j:j + w]
            if keep_index is not None:
                sample['gt_segm'] = sample['gt_segm'][keep_index]

        return sample

    def apply_bbox(self, bbox, region):
        i, j, h, w = region
        region_size = np.asarray([w, h])
        crop_bbox = bbox - np.asarray([j, i, j, i])
        crop_bbox = np.minimum(crop_bbox.reshape([-1, 2, 2]), region_size)
        crop_bbox = crop_bbox.clip(min=0)
        return crop_bbox.reshape([-1, 4]).astype('float32')

    def apply_segm(self, segms, region, image_shape):
        def _crop_poly(segm, crop):
            xmin, ymin, xmax, ymax = crop
            crop_coord = [xmin, ymin, xmin, ymax, xmax, ymax, xmax, ymin]
            crop_p = np.array(crop_coord).reshape(4, 2)
            crop_p = Polygon(crop_p)

            crop_segm = list()
            for poly in segm:
                poly = np.array(poly).reshape(len(poly) // 2, 2)
                polygon = Polygon(poly)
                if not polygon.is_valid:
                    exterior = polygon.exterior
                    multi_lines = exterior.intersection(exterior)
                    polygons = shapely.ops.polygonize(multi_lines)
                    polygon = MultiPolygon(polygons)
                multi_polygon = list()
                if isinstance(polygon, MultiPolygon):
                    multi_polygon = copy.deepcopy(polygon)
                else:
                    multi_polygon.append(copy.deepcopy(polygon))
                for per_polygon in multi_polygon:
                    inter = per_polygon.intersection(crop_p)
                    if not inter:
                        continue
                    if isinstance(inter, (MultiPolygon, GeometryCollection)):
                        for part in inter:
                            if not isinstance(part, Polygon):
                                continue
                            part = np.squeeze(
                                np.array(part.exterior.coords[:-1]).reshape(1,
                                                                            -1))
                            part[0::2] -= xmin
                            part[1::2] -= ymin
                            crop_segm.append(part.tolist())
                    elif isinstance(inter, Polygon):
                        crop_poly = np.squeeze(
                            np.array(inter.exterior.coords[:-1]).reshape(1, -1))
                        crop_poly[0::2] -= xmin
                        crop_poly[1::2] -= ymin
                        crop_segm.append(crop_poly.tolist())
                    else:
                        continue
            return crop_segm

        def _crop_rle(rle, crop, height, width):
            if 'counts' in rle and type(rle['counts']) == list:
                rle = mask_util.frPyObjects(rle, height, width)
            mask = mask_util.decode(rle)
            mask = mask[crop[1]:crop[3], crop[0]:crop[2]]
            rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8))
            return rle

        i, j, h, w = region
        crop = [j, i, j + w, i + h]
        height, width = image_shape
        crop_segms = []
        for segm in segms:
            if is_poly(segm):
                import copy
                import shapely.ops
                from shapely.geometry import Polygon, MultiPolygon, GeometryCollection
                # Polygon format
                crop_segms.append(_crop_poly(segm, crop))
            else:
                # RLE format
                import pycocotools.mask as mask_util
                crop_segms.append(_crop_rle(segm, crop, height, width))
        return crop_segms

    def apply(self, sample, context=None):
        h = random.randint(self.min_size,
                           min(sample['image'].shape[0], self.max_size))
        w = random.randint(self.min_size,
                           min(sample['image'].shape[1], self.max_size))

        region = self.get_crop_params(sample['image'].shape[:2], [h, w])
        return self.crop(sample, region)
W
wangguanzhong 已提交
2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831


@register_op
class WarpAffine(BaseOperator):
    def __init__(self,
                 keep_res=False,
                 pad=31,
                 input_h=512,
                 input_w=512,
                 scale=0.4,
                 shift=0.1):
        """WarpAffine
        Warp affine the image
2832 2833 2834 2835

        The code is based on https://github.com/xingyizhou/CenterNet/blob/master/src/lib/datasets/sample/ctdet.py


W
wangguanzhong 已提交
2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
        """
        super(WarpAffine, self).__init__()
        self.keep_res = keep_res
        self.pad = pad
        self.input_h = input_h
        self.input_w = input_w
        self.scale = scale
        self.shift = shift

    def apply(self, sample, context=None):
        img = sample['image']
        img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
        if 'gt_bbox' in sample and len(sample['gt_bbox']) == 0:
            return sample

        h, w = img.shape[:2]

        if self.keep_res:
            input_h = (h | self.pad) + 1
            input_w = (w | self.pad) + 1
            s = np.array([input_w, input_h], dtype=np.float32)
            c = np.array([w // 2, h // 2], dtype=np.float32)

        else:
            s = max(h, w) * 1.0
            input_h, input_w = self.input_h, self.input_w
            c = np.array([w / 2., h / 2.], dtype=np.float32)

        trans_input = get_affine_transform(c, s, 0, [input_w, input_h])
        img = cv2.resize(img, (w, h))
        inp = cv2.warpAffine(
            img, trans_input, (input_w, input_h), flags=cv2.INTER_LINEAR)
        sample['image'] = inp
        return sample


@register_op
class FlipWarpAffine(BaseOperator):
    def __init__(self,
                 keep_res=False,
                 pad=31,
                 input_h=512,
                 input_w=512,
                 not_rand_crop=False,
                 scale=0.4,
                 shift=0.1,
                 flip=0.5,
                 is_scale=True,
                 use_random=True):
        """FlipWarpAffine
        1. Random Crop
        2. Flip the image horizontal
        3. Warp affine the image 
        """
        super(FlipWarpAffine, self).__init__()
        self.keep_res = keep_res
        self.pad = pad
        self.input_h = input_h
        self.input_w = input_w
        self.not_rand_crop = not_rand_crop
        self.scale = scale
        self.shift = shift
        self.flip = flip
        self.is_scale = is_scale
        self.use_random = use_random

    def apply(self, sample, context=None):
        img = sample['image']
        img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
        if 'gt_bbox' in sample and len(sample['gt_bbox']) == 0:
            return sample

        h, w = img.shape[:2]

        if self.keep_res:
            input_h = (h | self.pad) + 1
            input_w = (w | self.pad) + 1
            s = np.array([input_w, input_h], dtype=np.float32)
            c = np.array([w // 2, h // 2], dtype=np.float32)

        else:
            s = max(h, w) * 1.0
            input_h, input_w = self.input_h, self.input_w
            c = np.array([w / 2., h / 2.], dtype=np.float32)

        if self.use_random:
            gt_bbox = sample['gt_bbox']
            if not self.not_rand_crop:
                s = s * np.random.choice(np.arange(0.6, 1.4, 0.1))
                w_border = get_border(128, w)
                h_border = get_border(128, h)
                c[0] = np.random.randint(low=w_border, high=w - w_border)
                c[1] = np.random.randint(low=h_border, high=h - h_border)
            else:
                sf = self.scale
                cf = self.shift
                c[0] += s * np.clip(np.random.randn() * cf, -2 * cf, 2 * cf)
                c[1] += s * np.clip(np.random.randn() * cf, -2 * cf, 2 * cf)
                s = s * np.clip(np.random.randn() * sf + 1, 1 - sf, 1 + sf)

            if np.random.random() < self.flip:
                img = img[:, ::-1, :]
                c[0] = w - c[0] - 1
                oldx1 = gt_bbox[:, 0].copy()
                oldx2 = gt_bbox[:, 2].copy()
                gt_bbox[:, 0] = w - oldx2 - 1
                gt_bbox[:, 2] = w - oldx1 - 1
            sample['gt_bbox'] = gt_bbox

        trans_input = get_affine_transform(c, s, 0, [input_w, input_h])
        if not self.use_random:
            img = cv2.resize(img, (w, h))
        inp = cv2.warpAffine(
            img, trans_input, (input_w, input_h), flags=cv2.INTER_LINEAR)
        if self.is_scale:
            inp = (inp.astype(np.float32) / 255.)
        sample['image'] = inp
        sample['center'] = c
        sample['scale'] = s
        return sample


@register_op
class CenterRandColor(BaseOperator):
    """Random color for CenterNet series models.
    Args:
        saturation (float): saturation settings.
        contrast (float): contrast settings.
        brightness (float): brightness settings.
    """

    def __init__(self, saturation=0.4, contrast=0.4, brightness=0.4):
        super(CenterRandColor, self).__init__()
        self.saturation = saturation
        self.contrast = contrast
        self.brightness = brightness

    def apply_saturation(self, img, img_gray):
        alpha = 1. + np.random.uniform(
            low=-self.saturation, high=self.saturation)
        self._blend(alpha, img, img_gray[:, :, None])
        return img

    def apply_contrast(self, img, img_gray):
        alpha = 1. + np.random.uniform(low=-self.contrast, high=self.contrast)
        img_mean = img_gray.mean()
        self._blend(alpha, img, img_mean)
        return img

    def apply_brightness(self, img, img_gray):
        alpha = 1 + np.random.uniform(
            low=-self.brightness, high=self.brightness)
        img *= alpha
        return img

    def _blend(self, alpha, img, img_mean):
        img *= alpha
        img_mean *= (1 - alpha)
        img += img_mean

    def __call__(self, sample, context=None):
        img = sample['image']
        img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        functions = [
            self.apply_brightness,
            self.apply_contrast,
            self.apply_saturation,
        ]
        distortions = np.random.permutation(functions)
        for func in distortions:
            img = func(img, img_gray)
        sample['image'] = img
        return sample
F
Feng Ni 已提交
3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047


@register_op
class Mosaic(BaseOperator):
    """ Mosaic operator for image and gt_bboxes
    The code is based on https://github.com/Megvii-BaseDetection/YOLOX/blob/main/yolox/data/datasets/mosaicdetection.py

    1. get mosaic coords
    2. clip bbox and get mosaic_labels
    3. random_affine augment
    4. Mixup augment as copypaste (optinal), not used in tiny/nano

    Args:
        prob (float): probability of using Mosaic, 1.0 as default
        input_dim (list[int]): input shape
        degrees (list[2]): the rotate range to apply, transform range is [min, max]
        translate (list[2]): the translate range to apply, transform range is [min, max]
        scale (list[2]): the scale range to apply, transform range is [min, max]
        shear (list[2]): the shear range to apply, transform range is [min, max]
        enable_mixup (bool): whether to enable Mixup or not
        mixup_prob (float): probability of using Mixup, 1.0 as default
        mixup_scale (list[int]): scale range of Mixup
        remove_outside_box (bool): whether remove outside boxes, False as
            default in COCO dataset, True in MOT dataset
    """

    def __init__(self,
                 prob=1.0,
                 input_dim=[640, 640],
                 degrees=[-10, 10],
                 translate=[-0.1, 0.1],
                 scale=[0.1, 2],
                 shear=[-2, 2],
                 enable_mixup=True,
                 mixup_prob=1.0,
                 mixup_scale=[0.5, 1.5],
                 remove_outside_box=False):
        super(Mosaic, self).__init__()
        self.prob = prob
F
Feng Ni 已提交
3048 3049
        if isinstance(input_dim, Integral):
            input_dim = [input_dim, input_dim]
F
Feng Ni 已提交
3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113
        self.input_dim = input_dim
        self.degrees = degrees
        self.translate = translate
        self.scale = scale
        self.shear = shear
        self.enable_mixup = enable_mixup
        self.mixup_prob = mixup_prob
        self.mixup_scale = mixup_scale
        self.remove_outside_box = remove_outside_box

    def get_mosaic_coords(self, mosaic_idx, xc, yc, w, h, input_h, input_w):
        # (x1, y1, x2, y2) means coords in large image,
        # small_coords means coords in small image in mosaic aug.
        if mosaic_idx == 0:
            # top left
            x1, y1, x2, y2 = max(xc - w, 0), max(yc - h, 0), xc, yc
            small_coords = w - (x2 - x1), h - (y2 - y1), w, h
        elif mosaic_idx == 1:
            # top right
            x1, y1, x2, y2 = xc, max(yc - h, 0), min(xc + w, input_w * 2), yc
            small_coords = 0, h - (y2 - y1), min(w, x2 - x1), h
        elif mosaic_idx == 2:
            # bottom left
            x1, y1, x2, y2 = max(xc - w, 0), yc, xc, min(input_h * 2, yc + h)
            small_coords = w - (x2 - x1), 0, w, min(y2 - y1, h)
        elif mosaic_idx == 3:
            # bottom right
            x1, y1, x2, y2 = xc, yc, min(xc + w, input_w * 2), min(input_h * 2,
                                                                   yc + h)
            small_coords = 0, 0, min(w, x2 - x1), min(y2 - y1, h)

        return (x1, y1, x2, y2), small_coords

    def random_affine_augment(self,
                              img,
                              labels=[],
                              input_dim=[640, 640],
                              degrees=[-10, 10],
                              scales=[0.1, 2],
                              shears=[-2, 2],
                              translates=[-0.1, 0.1]):
        # random rotation and scale
        degree = random.uniform(degrees[0], degrees[1])
        scale = random.uniform(scales[0], scales[1])
        assert scale > 0, "Argument scale should be positive."
        R = cv2.getRotationMatrix2D(angle=degree, center=(0, 0), scale=scale)
        M = np.ones([2, 3])

        # random shear
        shear = random.uniform(shears[0], shears[1])
        shear_x = math.tan(shear * math.pi / 180)
        shear_y = math.tan(shear * math.pi / 180)
        M[0] = R[0] + shear_y * R[1]
        M[1] = R[1] + shear_x * R[0]

        # random translation
        translate = random.uniform(translates[0], translates[1])
        translation_x = translate * input_dim[0]
        translation_y = translate * input_dim[1]
        M[0, 2] = translation_x
        M[1, 2] = translation_y

        # warpAffine
        img = cv2.warpAffine(
3114
            img, M, dsize=tuple(input_dim), borderValue=(114, 114, 114))
F
Feng Ni 已提交
3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148

        num_gts = len(labels)
        if num_gts > 0:
            # warp corner points
            corner_points = np.ones((4 * num_gts, 3))
            corner_points[:, :2] = labels[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape(
                4 * num_gts, 2)  # x1y1, x2y2, x1y2, x2y1
            # apply affine transform
            corner_points = corner_points @M.T
            corner_points = corner_points.reshape(num_gts, 8)

            # create new boxes
            corner_xs = corner_points[:, 0::2]
            corner_ys = corner_points[:, 1::2]
            new_bboxes = np.concatenate((corner_xs.min(1), corner_ys.min(1),
                                         corner_xs.max(1), corner_ys.max(1)))
            new_bboxes = new_bboxes.reshape(4, num_gts).T

            # clip boxes
            new_bboxes[:, 0::2] = np.clip(new_bboxes[:, 0::2], 0, input_dim[0])
            new_bboxes[:, 1::2] = np.clip(new_bboxes[:, 1::2], 0, input_dim[1])
            labels[:, :4] = new_bboxes

        return img, labels

    def __call__(self, sample, context=None):
        if not isinstance(sample, Sequence):
            return sample

        assert len(
            sample) == 5, "Mosaic needs 5 samples, 4 for mosaic and 1 for mixup."
        if np.random.uniform(0., 1.) > self.prob:
            return sample[0]

3149
        mosaic_gt_bbox, mosaic_gt_class, mosaic_is_crowd, mosaic_difficult = [], [], [], []
F
Feng Ni 已提交
3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
        input_h, input_w = self.input_dim
        yc = int(random.uniform(0.5 * input_h, 1.5 * input_h))
        xc = int(random.uniform(0.5 * input_w, 1.5 * input_w))
        mosaic_img = np.full((input_h * 2, input_w * 2, 3), 114, dtype=np.uint8)

        # 1. get mosaic coords
        for mosaic_idx, sp in enumerate(sample[:4]):
            img = sp['image']
            gt_bbox = sp['gt_bbox']
            h0, w0 = img.shape[:2]
            scale = min(1. * input_h / h0, 1. * input_w / w0)
            img = cv2.resize(
                img, (int(w0 * scale), int(h0 * scale)),
                interpolation=cv2.INTER_LINEAR)
            (h, w, c) = img.shape[:3]

            # suffix l means large image, while s means small image in mosaic aug.
            (l_x1, l_y1, l_x2, l_y2), (
                s_x1, s_y1, s_x2, s_y2) = self.get_mosaic_coords(
                    mosaic_idx, xc, yc, w, h, input_h, input_w)

            mosaic_img[l_y1:l_y2, l_x1:l_x2] = img[s_y1:s_y2, s_x1:s_x2]
            padw, padh = l_x1 - s_x1, l_y1 - s_y1

            # Normalized xywh to pixel xyxy format
            _gt_bbox = gt_bbox.copy()
            if len(gt_bbox) > 0:
                _gt_bbox[:, 0] = scale * gt_bbox[:, 0] + padw
                _gt_bbox[:, 1] = scale * gt_bbox[:, 1] + padh
                _gt_bbox[:, 2] = scale * gt_bbox[:, 2] + padw
                _gt_bbox[:, 3] = scale * gt_bbox[:, 3] + padh

            mosaic_gt_bbox.append(_gt_bbox)
            mosaic_gt_class.append(sp['gt_class'])
3184 3185 3186 3187
            if 'is_crowd' in sp:
                mosaic_is_crowd.append(sp['is_crowd'])
            if 'difficult' in sp:
                mosaic_difficult.append(sp['difficult'])
F
Feng Ni 已提交
3188 3189 3190 3191 3192

        # 2. clip bbox and get mosaic_labels([gt_bbox, gt_class, is_crowd])
        if len(mosaic_gt_bbox):
            mosaic_gt_bbox = np.concatenate(mosaic_gt_bbox, 0)
            mosaic_gt_class = np.concatenate(mosaic_gt_class, 0)
3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
            if mosaic_is_crowd:
                mosaic_is_crowd = np.concatenate(mosaic_is_crowd, 0)
                mosaic_labels = np.concatenate([
                    mosaic_gt_bbox,
                    mosaic_gt_class.astype(mosaic_gt_bbox.dtype),
                    mosaic_is_crowd.astype(mosaic_gt_bbox.dtype)
                ], 1)
            elif mosaic_difficult:
                mosaic_difficult = np.concatenate(mosaic_difficult, 0)
                mosaic_labels = np.concatenate([
                    mosaic_gt_bbox,
                    mosaic_gt_class.astype(mosaic_gt_bbox.dtype),
                    mosaic_difficult.astype(mosaic_gt_bbox.dtype)
                ], 1)
            else:
                mosaic_labels = np.concatenate([
                    mosaic_gt_bbox, mosaic_gt_class.astype(mosaic_gt_bbox.dtype)
                ], 1)
F
Feng Ni 已提交
3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246
            if self.remove_outside_box:
                # for MOT dataset
                flag1 = mosaic_gt_bbox[:, 0] < 2 * input_w
                flag2 = mosaic_gt_bbox[:, 2] > 0
                flag3 = mosaic_gt_bbox[:, 1] < 2 * input_h
                flag4 = mosaic_gt_bbox[:, 3] > 0
                flag_all = flag1 * flag2 * flag3 * flag4
                mosaic_labels = mosaic_labels[flag_all]
            else:
                mosaic_labels[:, 0] = np.clip(mosaic_labels[:, 0], 0,
                                              2 * input_w)
                mosaic_labels[:, 1] = np.clip(mosaic_labels[:, 1], 0,
                                              2 * input_h)
                mosaic_labels[:, 2] = np.clip(mosaic_labels[:, 2], 0,
                                              2 * input_w)
                mosaic_labels[:, 3] = np.clip(mosaic_labels[:, 3], 0,
                                              2 * input_h)
        else:
            mosaic_labels = np.zeros((1, 6))

        # 3. random_affine augment
        mosaic_img, mosaic_labels = self.random_affine_augment(
            mosaic_img,
            mosaic_labels,
            input_dim=self.input_dim,
            degrees=self.degrees,
            translates=self.translate,
            scales=self.scale,
            shears=self.shear)

        # 4. Mixup augment as copypaste, https://arxiv.org/abs/2012.07177
        # optinal, not used(enable_mixup=False) in tiny/nano
        if (self.enable_mixup and not len(mosaic_labels) == 0 and
                random.random() < self.mixup_prob):
            sample_mixup = sample[4]
            mixup_img = sample_mixup['image']
3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
            if 'is_crowd' in sample_mixup:
                cp_labels = np.concatenate([
                    sample_mixup['gt_bbox'],
                    sample_mixup['gt_class'].astype(mosaic_labels.dtype),
                    sample_mixup['is_crowd'].astype(mosaic_labels.dtype)
                ], 1)
            elif 'difficult' in sample_mixup:
                cp_labels = np.concatenate([
                    sample_mixup['gt_bbox'],
                    sample_mixup['gt_class'].astype(mosaic_labels.dtype),
                    sample_mixup['difficult'].astype(mosaic_labels.dtype)
                ], 1)
            else:
                cp_labels = np.concatenate([
                    sample_mixup['gt_bbox'],
                    sample_mixup['gt_class'].astype(mosaic_labels.dtype)
                ], 1)
F
Feng Ni 已提交
3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274
            mosaic_img, mosaic_labels = self.mixup_augment(
                mosaic_img, mosaic_labels, self.input_dim, cp_labels, mixup_img)

        sample0 = sample[0]
        sample0['image'] = mosaic_img.astype(np.uint8)  # can not be float32
        sample0['h'] = float(mosaic_img.shape[0])
        sample0['w'] = float(mosaic_img.shape[1])
        sample0['im_shape'][0] = sample0['h']
        sample0['im_shape'][1] = sample0['w']
        sample0['gt_bbox'] = mosaic_labels[:, :4].astype(np.float32)
        sample0['gt_class'] = mosaic_labels[:, 4:5].astype(np.float32)
3275 3276 3277 3278
        if 'is_crowd' in sample[0]:
            sample0['is_crowd'] = mosaic_labels[:, 5:6].astype(np.float32)
        if 'difficult' in sample[0]:
            sample0['difficult'] = mosaic_labels[:, 5:6].astype(np.float32)
F
Feng Ni 已提交
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
        return sample0

    def mixup_augment(self, origin_img, origin_labels, input_dim, cp_labels,
                      img):
        jit_factor = random.uniform(*self.mixup_scale)
        FLIP = random.uniform(0, 1) > 0.5
        if len(img.shape) == 3:
            cp_img = np.ones(
                (input_dim[0], input_dim[1], 3), dtype=np.uint8) * 114
        else:
            cp_img = np.ones(input_dim, dtype=np.uint8) * 114

        cp_scale_ratio = min(input_dim[0] / img.shape[0],
                             input_dim[1] / img.shape[1])
        resized_img = cv2.resize(
            img, (int(img.shape[1] * cp_scale_ratio),
                  int(img.shape[0] * cp_scale_ratio)),
            interpolation=cv2.INTER_LINEAR)

        cp_img[:int(img.shape[0] * cp_scale_ratio), :int(img.shape[
            1] * cp_scale_ratio)] = resized_img

        cp_img = cv2.resize(cp_img, (int(cp_img.shape[1] * jit_factor),
                                     int(cp_img.shape[0] * jit_factor)))
        cp_scale_ratio *= jit_factor

        if FLIP:
            cp_img = cp_img[:, ::-1, :]

        origin_h, origin_w = cp_img.shape[:2]
        target_h, target_w = origin_img.shape[:2]
        padded_img = np.zeros(
            (max(origin_h, target_h), max(origin_w, target_w), 3),
            dtype=np.uint8)
        padded_img[:origin_h, :origin_w] = cp_img

        x_offset, y_offset = 0, 0
        if padded_img.shape[0] > target_h:
            y_offset = random.randint(0, padded_img.shape[0] - target_h - 1)
        if padded_img.shape[1] > target_w:
            x_offset = random.randint(0, padded_img.shape[1] - target_w - 1)
        padded_cropped_img = padded_img[y_offset:y_offset + target_h, x_offset:
                                        x_offset + target_w]

        # adjust boxes
        cp_bboxes_origin_np = cp_labels[:, :4].copy()
        cp_bboxes_origin_np[:, 0::2] = np.clip(cp_bboxes_origin_np[:, 0::2] *
                                               cp_scale_ratio, 0, origin_w)
        cp_bboxes_origin_np[:, 1::2] = np.clip(cp_bboxes_origin_np[:, 1::2] *
                                               cp_scale_ratio, 0, origin_h)

        if FLIP:
            cp_bboxes_origin_np[:, 0::2] = (
                origin_w - cp_bboxes_origin_np[:, 0::2][:, ::-1])
        cp_bboxes_transformed_np = cp_bboxes_origin_np.copy()
        if self.remove_outside_box:
            # for MOT dataset
            cp_bboxes_transformed_np[:, 0::2] -= x_offset
            cp_bboxes_transformed_np[:, 1::2] -= y_offset
        else:
            cp_bboxes_transformed_np[:, 0::2] = np.clip(
                cp_bboxes_transformed_np[:, 0::2] - x_offset, 0, target_w)
            cp_bboxes_transformed_np[:, 1::2] = np.clip(
                cp_bboxes_transformed_np[:, 1::2] - y_offset, 0, target_h)

        cls_labels = cp_labels[:, 4:5].copy()
        box_labels = cp_bboxes_transformed_np
3346 3347 3348 3349 3350
        if cp_labels.shape[-1] == 6:
            crd_labels = cp_labels[:, 5:6].copy()
            labels = np.hstack((box_labels, cls_labels, crd_labels))
        else:
            labels = np.hstack((box_labels, cls_labels))
F
Feng Ni 已提交
3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414
        if self.remove_outside_box:
            labels = labels[labels[:, 0] < target_w]
            labels = labels[labels[:, 2] > 0]
            labels = labels[labels[:, 1] < target_h]
            labels = labels[labels[:, 3] > 0]

        origin_labels = np.vstack((origin_labels, labels))
        origin_img = origin_img.astype(np.float32)
        origin_img = 0.5 * origin_img + 0.5 * padded_cropped_img.astype(
            np.float32)

        return origin_img.astype(np.uint8), origin_labels


@register_op
class PadResize(BaseOperator):
    """ PadResize for image and gt_bbbox

    Args:
        target_size (list[int]): input shape
        fill_value (float): pixel value of padded image
    """

    def __init__(self, target_size, fill_value=114):
        super(PadResize, self).__init__()
        if isinstance(target_size, Integral):
            target_size = [target_size, target_size]
        self.target_size = target_size
        self.fill_value = fill_value

    def _resize(self, img, bboxes, labels):
        ratio = min(self.target_size[0] / img.shape[0],
                    self.target_size[1] / img.shape[1])
        w, h = int(img.shape[1] * ratio), int(img.shape[0] * ratio)
        resized_img = cv2.resize(img, (w, h), interpolation=cv2.INTER_LINEAR)

        if len(bboxes) > 0:
            bboxes *= ratio
            mask = np.minimum(bboxes[:, 2] - bboxes[:, 0],
                              bboxes[:, 3] - bboxes[:, 1]) > 1
            bboxes = bboxes[mask]
            labels = labels[mask]
        return resized_img, bboxes, labels

    def _pad(self, img):
        h, w, _ = img.shape
        if h == self.target_size[0] and w == self.target_size[1]:
            return img
        padded_img = np.full(
            (self.target_size[0], self.target_size[1], 3),
            self.fill_value,
            dtype=np.uint8)
        padded_img[:h, :w] = img
        return padded_img

    def apply(self, sample, context=None):
        image = sample['image']
        bboxes = sample['gt_bbox']
        labels = sample['gt_class']
        image, bboxes, labels = self._resize(image, bboxes, labels)
        sample['image'] = self._pad(image).astype(np.float32)
        sample['gt_bbox'] = bboxes
        sample['gt_class'] = labels
        return sample
F
Feng Ni 已提交
3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475


@register_op
class RandomShift(BaseOperator):
    """
    Randomly shift image

    Args:
        prob (float): probability to do random shift.
        max_shift (int): max shift pixels
        filter_thr (int): filter gt bboxes if one side is smaller than this
    """

    def __init__(self, prob=0.5, max_shift=32, filter_thr=1):
        super(RandomShift, self).__init__()
        self.prob = prob
        self.max_shift = max_shift
        self.filter_thr = filter_thr

    def calc_shift_coor(self, im_h, im_w, shift_h, shift_w):
        return [
            max(0, shift_w), max(0, shift_h), min(im_w, im_w + shift_w),
            min(im_h, im_h + shift_h)
        ]

    def apply(self, sample, context=None):
        if random.random() > self.prob:
            return sample

        im = sample['image']
        gt_bbox = sample['gt_bbox']
        gt_class = sample['gt_class']
        im_h, im_w = im.shape[:2]
        shift_h = random.randint(-self.max_shift, self.max_shift)
        shift_w = random.randint(-self.max_shift, self.max_shift)

        gt_bbox[:, 0::2] += shift_w
        gt_bbox[:, 1::2] += shift_h
        gt_bbox[:, 0::2] = np.clip(gt_bbox[:, 0::2], 0, im_w)
        gt_bbox[:, 1::2] = np.clip(gt_bbox[:, 1::2], 0, im_h)
        gt_bbox_h = gt_bbox[:, 2] - gt_bbox[:, 0]
        gt_bbox_w = gt_bbox[:, 3] - gt_bbox[:, 1]
        keep = (gt_bbox_w > self.filter_thr) & (gt_bbox_h > self.filter_thr)
        if not keep.any():
            return sample

        gt_bbox = gt_bbox[keep]
        gt_class = gt_class[keep]

        # shift image
        coor_new = self.calc_shift_coor(im_h, im_w, shift_h, shift_w)
        # shift frame to the opposite direction
        coor_old = self.calc_shift_coor(im_h, im_w, -shift_h, -shift_w)
        canvas = np.zeros_like(im)
        canvas[coor_new[1]:coor_new[3], coor_new[0]:coor_new[2]] \
            = im[coor_old[1]:coor_old[3], coor_old[0]:coor_old[2]]

        sample['image'] = canvas
        sample['gt_bbox'] = gt_bbox
        sample['gt_class'] = gt_class
        return sample
3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637


@register_op
class StrongAugImage(BaseOperator):
    def __init__(self, transforms):
        super(StrongAugImage, self).__init__()
        self.transforms = Compose(transforms)

    def apply(self, sample, context=None):
        im = sample
        im['image'] = sample['image'].astype('uint8')
        results = self.transforms(im)
        sample['image'] = results['image'].astype('uint8')
        return sample


@register_op
class RandomColorJitter(BaseOperator):
    def __init__(self,
                 prob=0.8,
                 brightness=0.4,
                 contrast=0.4,
                 saturation=0.4,
                 hue=0.1):
        super(RandomColorJitter, self).__init__()
        self.prob = prob
        self.brightness = brightness
        self.contrast = contrast
        self.saturation = saturation
        self.hue = hue

    def apply(self, sample, context=None):
        if np.random.uniform(0, 1) < self.prob:
            from paddle.vision.transforms import ColorJitter
            transform = ColorJitter(self.brightness, self.contrast,
                                    self.saturation, self.hue)
            sample['image'] = transform(sample['image'].astype(np.uint8))
            sample['image'] = sample['image'].astype(np.float32)
        return sample


@register_op
class RandomGrayscale(BaseOperator):
    def __init__(self, prob=0.2):
        super(RandomGrayscale, self).__init__()
        self.prob = prob

    def apply(self, sample, context=None):
        if np.random.uniform(0, 1) < self.prob:
            from paddle.vision.transforms import Grayscale
            transform = Grayscale(num_output_channels=3)
            sample['image'] = transform(sample['image'])
        return sample


@register_op
class RandomGaussianBlur(BaseOperator):
    def __init__(self, prob=0.5, sigma=[0.1, 2.0]):
        super(RandomGaussianBlur, self).__init__()
        self.prob = prob
        self.sigma = sigma

    def apply(self, sample, context=None):
        if np.random.uniform(0, 1) < self.prob:
            sigma = np.random.uniform(self.sigma[0], self.sigma[1])
            im = cv2.GaussianBlur(sample['image'], (23, 23), sigma)
            sample['image'] = im
        return sample


@register_op
class RandomErasing(BaseOperator):
    def __init__(self,
                 prob=0.5,
                 scale=(0.02, 0.33),
                 ratio=(0.3, 3.3),
                 value=0,
                 inplace=False):
        super(RandomErasing, self).__init__()
        assert isinstance(scale,
                          (tuple, list)), "scale should be a tuple or list"
        assert (scale[0] >= 0 and scale[1] <= 1 and scale[0] <= scale[1]
                ), "scale should be of kind (min, max) and in range [0, 1]"
        assert isinstance(ratio,
                          (tuple, list)), "ratio should be a tuple or list"
        assert (ratio[0] >= 0 and
                ratio[0] <= ratio[1]), "ratio should be of kind (min, max)"
        assert isinstance(
            value, (Number, str, tuple,
                    list)), "value should be a number, tuple, list or str"
        if isinstance(value, str) and value != "random":
            raise ValueError("value must be 'random' when type is str")
        self.prob = prob
        self.scale = scale
        self.ratio = ratio
        self.value = value
        self.inplace = inplace

    def _erase(self, img, i, j, h, w, v, inplace=False):
        if not inplace:
            img = img.copy()
        img[i:i + h, j:j + w, ...] = v
        return img

    def _get_param(self, img, scale, ratio, value):
        shape = np.asarray(img).astype(np.uint8).shape
        h, w, c = shape[-3], shape[-2], shape[-1]
        img_area = h * w
        log_ratio = np.log(ratio)
        for _ in range(1):
            erase_area = np.random.uniform(*scale) * img_area
            aspect_ratio = np.exp(np.random.uniform(*log_ratio))
            erase_h = int(round(np.sqrt(erase_area * aspect_ratio)))
            erase_w = int(round(np.sqrt(erase_area / aspect_ratio)))
            if erase_h >= h or erase_w >= w:
                continue

            if value is None:
                v = np.random.normal(size=[erase_h, erase_w, c]) * 255
            else:
                v = np.array(value)[None, None, :]
            top = np.random.randint(0, h - erase_h + 1)
            left = np.random.randint(0, w - erase_w + 1)
            return top, left, erase_h, erase_w, v
        return 0, 0, h, w, img

    def apply(self, sample, context=None):
        if random.random() < self.prob:
            if isinstance(self.value, Number):
                value = [self.value]
            elif isinstance(self.value, str):
                value = None
            else:
                value = self.value
            if value is not None and not (len(value) == 1 or len(value) == 3):
                raise ValueError(
                    "Value should be a single number or a sequence with length equals to image's channel."
                )
            im = sample['image']
            top, left, erase_h, erase_w, v = self._get_param(im, self.scale,
                                                             self.ratio, value)
            im = self._erase(im, top, left, erase_h, erase_w, v, self.inplace)
            sample['image'] = im
        return sample


@register_op
class RandomErasingCrop(BaseOperator):
    def __init__(self):
        super(RandomErasingCrop, self).__init__()
        self.transform1 = RandomErasing(
            prob=0.7, scale=(0.05, 0.2), ratio=(0.3, 3.3), value="random")
        self.transform2 = RandomErasing(
            prob=0.5, scale=(0.05, 0.2), ratio=(0.1, 6), value="random")
        self.transform3 = RandomErasing(
            prob=0.3, scale=(0.05, 0.2), ratio=(0.05, 8), value="random")

    def apply(self, sample, context=None):
        sample = self.transform1(sample)
        sample = self.transform2(sample)
        sample = self.transform3(sample)
        return sample