operators.py 107.2 KB
Newer Older
W
wangxinxin08 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Q
qingqing01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# function:
#    operators to process sample,
#    eg: decode/resize/crop image

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division

try:
    from collections.abc import Sequence
except Exception:
    from collections import Sequence

W
wangxinxin08 已提交
28
from numbers import Number, Integral
Q
qingqing01 已提交
29 30 31 32 33 34

import uuid
import random
import math
import numpy as np
import os
W
wangxinxin08 已提交
35
import copy
Q
qingqing01 已提交
36 37 38 39 40 41

import cv2
from PIL import Image, ImageEnhance, ImageDraw

from ppdet.core.workspace import serializable
from ppdet.modeling.layers import AnchorGrid
C
cnn 已提交
42
from ppdet.modeling import bbox_utils
43
from ..reader import Compose
Q
qingqing01 已提交
44 45 46 47 48

from .op_helper import (satisfy_sample_constraint, filter_and_process,
                        generate_sample_bbox, clip_bbox, data_anchor_sampling,
                        satisfy_sample_constraint_coverage, crop_image_sampling,
                        generate_sample_bbox_square, bbox_area_sampling,
49
                        is_poly, gaussian_radius, draw_gaussian, transform_bbox)
Q
qingqing01 已提交
50 51 52 53

from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)

W
wangxinxin08 已提交
54
registered_ops = []
Q
qingqing01 已提交
55

W
wangxinxin08 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

def register_op(cls):
    registered_ops.append(cls.__name__)
    if not hasattr(BaseOperator, cls.__name__):
        setattr(BaseOperator, cls.__name__, cls)
    else:
        raise KeyError("The {} class has been registered.".format(cls.__name__))
    return serializable(cls)


class BboxError(ValueError):
    pass


class ImageError(ValueError):
    pass


class BaseOperator(object):
    def __init__(self, name=None):
        if name is None:
            name = self.__class__.__name__
        self._id = name + '_' + str(uuid.uuid4())[-6:]

    def apply(self, sample, context=None):
        """ Process a sample.
Q
qingqing01 已提交
82
        Args:
W
wangxinxin08 已提交
83 84 85 86
            sample (dict): a dict of sample, eg: {'image':xx, 'label': xxx}
            context (dict): info about this sample processing
        Returns:
            result (dict): a processed sample
Q
qingqing01 已提交
87
        """
W
wangxinxin08 已提交
88
        return sample
Q
qingqing01 已提交
89

W
wangxinxin08 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
    def __call__(self, sample, context=None):
        """ Process a sample.
        Args:
            sample (dict): a dict of sample, eg: {'image':xx, 'label': xxx}
            context (dict): info about this sample processing
        Returns:
            result (dict): a processed sample
        """
        if isinstance(sample, Sequence):
            for i in range(len(sample)):
                sample[i] = self.apply(sample[i], context)
        else:
            sample = self.apply(sample, context)
        return sample

    def __str__(self):
        return str(self._id)


@register_op
class Decode(BaseOperator):
G
George Ni 已提交
111
    def __init__(self):
W
wangxinxin08 已提交
112 113 114
        """ Transform the image data to numpy format following the rgb format
        """
        super(Decode, self).__init__()
Q
qingqing01 已提交
115

W
wangxinxin08 已提交
116
    def apply(self, sample, context=None):
Q
qingqing01 已提交
117 118 119 120
        """ load image if 'im_file' field is not empty but 'image' is"""
        if 'image' not in sample:
            with open(sample['im_file'], 'rb') as f:
                sample['image'] = f.read()
W
wangxinxin08 已提交
121
            sample.pop('im_file')
Q
qingqing01 已提交
122 123 124 125

        im = sample['image']
        data = np.frombuffer(im, dtype='uint8')
        im = cv2.imdecode(data, 1)  # BGR mode, but need RGB mode
G
George Ni 已提交
126 127
        if 'keep_ori_im' in sample and sample['keep_ori_im']:
            sample['ori_image'] = im
G
George Ni 已提交
128
        im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
W
wangxinxin08 已提交
129

Q
qingqing01 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
        sample['image'] = im
        if 'h' not in sample:
            sample['h'] = im.shape[0]
        elif sample['h'] != im.shape[0]:
            logger.warn(
                "The actual image height: {} is not equal to the "
                "height: {} in annotation, and update sample['h'] by actual "
                "image height.".format(im.shape[0], sample['h']))
            sample['h'] = im.shape[0]
        if 'w' not in sample:
            sample['w'] = im.shape[1]
        elif sample['w'] != im.shape[1]:
            logger.warn(
                "The actual image width: {} is not equal to the "
                "width: {} in annotation, and update sample['w'] by actual "
                "image width.".format(im.shape[1], sample['w']))
            sample['w'] = im.shape[1]

W
wangxinxin08 已提交
148 149
        sample['im_shape'] = np.array(im.shape[:2], dtype=np.float32)
        sample['scale_factor'] = np.array([1., 1.], dtype=np.float32)
Q
qingqing01 已提交
150 151 152 153
        return sample


@register_op
W
wangxinxin08 已提交
154
class Permute(BaseOperator):
G
George Ni 已提交
155
    def __init__(self):
Q
qingqing01 已提交
156
        """
W
wangxinxin08 已提交
157
        Change the channel to be (C, H, W)
Q
qingqing01 已提交
158
        """
W
wangxinxin08 已提交
159
        super(Permute, self).__init__()
Q
qingqing01 已提交
160

W
wangxinxin08 已提交
161
    def apply(self, sample, context=None):
Q
qingqing01 已提交
162
        im = sample['image']
W
wangxinxin08 已提交
163 164
        im = im.transpose((2, 0, 1))
        sample['image'] = im
Q
qingqing01 已提交
165 166 167 168
        return sample


@register_op
W
wangxinxin08 已提交
169 170
class Lighting(BaseOperator):
    """
171
    Lighting the image by eigenvalues and eigenvectors
W
wangxinxin08 已提交
172 173 174 175 176
    Args:
        eigval (list): eigenvalues
        eigvec (list): eigenvectors
        alphastd (float): random weight of lighting, 0.1 by default
    """
Q
qingqing01 已提交
177

W
wangxinxin08 已提交
178 179 180 181 182
    def __init__(self, eigval, eigvec, alphastd=0.1):
        super(Lighting, self).__init__()
        self.alphastd = alphastd
        self.eigval = np.array(eigval).astype('float32')
        self.eigvec = np.array(eigvec).astype('float32')
Q
qingqing01 已提交
183

W
wangxinxin08 已提交
184 185 186
    def apply(self, sample, context=None):
        alpha = np.random.normal(scale=self.alphastd, size=(3, ))
        sample['image'] += np.dot(self.eigvec, self.eigval * alpha)
Q
qingqing01 已提交
187 188 189 190
        return sample


@register_op
W
wangxinxin08 已提交
191 192
class RandomErasingImage(BaseOperator):
    def __init__(self, prob=0.5, lower=0.02, higher=0.4, aspect_ratio=0.3):
Q
qingqing01 已提交
193
        """
W
wangxinxin08 已提交
194
        Random Erasing Data Augmentation, see https://arxiv.org/abs/1708.04896
Q
qingqing01 已提交
195
        Args:
W
wangxinxin08 已提交
196 197 198 199
            prob (float): probability to carry out random erasing
            lower (float): lower limit of the erasing area ratio
            heigher (float): upper limit of the erasing area ratio
            aspect_ratio (float): aspect ratio of the erasing region
Q
qingqing01 已提交
200
        """
W
wangxinxin08 已提交
201
        super(RandomErasingImage, self).__init__()
Q
qingqing01 已提交
202
        self.prob = prob
W
wangxinxin08 已提交
203
        self.lower = lower
204
        self.higher = higher
W
wangxinxin08 已提交
205
        self.aspect_ratio = aspect_ratio
Q
qingqing01 已提交
206

W
wangxinxin08 已提交
207 208 209 210 211 212 213
    def apply(self, sample):
        gt_bbox = sample['gt_bbox']
        im = sample['image']
        if not isinstance(im, np.ndarray):
            raise TypeError("{}: image is not a numpy array.".format(self))
        if len(im.shape) != 3:
            raise ImageError("{}: image is not 3-dimensional.".format(self))
Q
qingqing01 已提交
214

W
wangxinxin08 已提交
215 216 217
        for idx in range(gt_bbox.shape[0]):
            if self.prob <= np.random.rand():
                continue
Q
qingqing01 已提交
218

W
wangxinxin08 已提交
219
            x1, y1, x2, y2 = gt_bbox[idx, :]
220 221
            w_bbox = x2 - x1
            h_bbox = y2 - y1
W
wangxinxin08 已提交
222
            area = w_bbox * h_bbox
Q
qingqing01 已提交
223

W
wangxinxin08 已提交
224 225 226
            target_area = random.uniform(self.lower, self.higher) * area
            aspect_ratio = random.uniform(self.aspect_ratio,
                                          1 / self.aspect_ratio)
Q
qingqing01 已提交
227

W
wangxinxin08 已提交
228 229
            h = int(round(math.sqrt(target_area * aspect_ratio)))
            w = int(round(math.sqrt(target_area / aspect_ratio)))
Q
qingqing01 已提交
230

W
wangxinxin08 已提交
231 232 233 234 235 236
            if w < w_bbox and h < h_bbox:
                off_y1 = random.randint(0, int(h_bbox - h))
                off_x1 = random.randint(0, int(w_bbox - w))
                im[int(y1 + off_y1):int(y1 + off_y1 + h), int(x1 + off_x1):int(
                    x1 + off_x1 + w), :] = 0
        sample['image'] = im
Q
qingqing01 已提交
237 238 239 240
        return sample


@register_op
W
wangxinxin08 已提交
241 242 243
class NormalizeImage(BaseOperator):
    def __init__(self, mean=[0.485, 0.456, 0.406], std=[1, 1, 1],
                 is_scale=True):
Q
qingqing01 已提交
244 245
        """
        Args:
W
wangxinxin08 已提交
246 247
            mean (list): the pixel mean
            std (list): the pixel variance
Q
qingqing01 已提交
248
        """
W
wangxinxin08 已提交
249 250 251 252 253 254 255 256 257 258
        super(NormalizeImage, self).__init__()
        self.mean = mean
        self.std = std
        self.is_scale = is_scale
        if not (isinstance(self.mean, list) and isinstance(self.std, list) and
                isinstance(self.is_scale, bool)):
            raise TypeError("{}: input type is invalid.".format(self))
        from functools import reduce
        if reduce(lambda x, y: x * y, self.std) == 0:
            raise ValueError('{}: std is invalid!'.format(self))
Q
qingqing01 已提交
259

W
wangxinxin08 已提交
260 261 262 263 264 265 266 267 268 269
    def apply(self, sample, context=None):
        """Normalize the image.
        Operators:
            1.(optional) Scale the image to [0,1]
            2. Each pixel minus mean and is divided by std
        """
        im = sample['image']
        im = im.astype(np.float32, copy=False)
        mean = np.array(self.mean)[np.newaxis, np.newaxis, :]
        std = np.array(self.std)[np.newaxis, np.newaxis, :]
Q
qingqing01 已提交
270

W
wangxinxin08 已提交
271 272
        if self.is_scale:
            im = im / 255.0
Q
qingqing01 已提交
273

W
wangxinxin08 已提交
274 275
        im -= mean
        im /= std
Q
qingqing01 已提交
276

W
wangxinxin08 已提交
277
        sample['image'] = im
Q
qingqing01 已提交
278 279 280 281
        return sample


@register_op
W
wangxinxin08 已提交
282
class GridMask(BaseOperator):
Q
qingqing01 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
    def __init__(self,
                 use_h=True,
                 use_w=True,
                 rotate=1,
                 offset=False,
                 ratio=0.5,
                 mode=1,
                 prob=0.7,
                 upper_iter=360000):
        """
        GridMask Data Augmentation, see https://arxiv.org/abs/2001.04086
        Args:
            use_h (bool): whether to mask vertically
            use_w (boo;): whether to mask horizontally
            rotate (float): angle for the mask to rotate
            offset (float): mask offset
            ratio (float): mask ratio
            mode (int): gridmask mode
            prob (float): max probability to carry out gridmask
            upper_iter (int): suggested to be equal to global max_iter
        """
W
wangxinxin08 已提交
304
        super(GridMask, self).__init__()
Q
qingqing01 已提交
305 306 307 308 309 310 311 312 313
        self.use_h = use_h
        self.use_w = use_w
        self.rotate = rotate
        self.offset = offset
        self.ratio = ratio
        self.mode = mode
        self.prob = prob
        self.upper_iter = upper_iter

W
wangguanzhong 已提交
314 315
        from .gridmask_utils import Gridmask
        self.gridmask_op = Gridmask(
Q
qingqing01 已提交
316 317 318 319 320 321 322 323 324
            use_h,
            use_w,
            rotate=rotate,
            offset=offset,
            ratio=ratio,
            mode=mode,
            prob=prob,
            upper_iter=upper_iter)

W
wangxinxin08 已提交
325 326
    def apply(self, sample, context=None):
        sample['image'] = self.gridmask_op(sample['image'], sample['curr_iter'])
Q
qingqing01 已提交
327 328 329 330
        return sample


@register_op
W
wangxinxin08 已提交
331 332 333 334 335 336 337 338 339 340 341 342
class RandomDistort(BaseOperator):
    """Random color distortion.
    Args:
        hue (list): hue settings. in [lower, upper, probability] format.
        saturation (list): saturation settings. in [lower, upper, probability] format.
        contrast (list): contrast settings. in [lower, upper, probability] format.
        brightness (list): brightness settings. in [lower, upper, probability] format.
        random_apply (bool): whether to apply in random (yolo) or fixed (SSD)
            order.
        count (int): the number of doing distrot
        random_channel (bool): whether to swap channels randomly
    """
Q
qingqing01 已提交
343

W
wangxinxin08 已提交
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
    def __init__(self,
                 hue=[-18, 18, 0.5],
                 saturation=[0.5, 1.5, 0.5],
                 contrast=[0.5, 1.5, 0.5],
                 brightness=[0.5, 1.5, 0.5],
                 random_apply=True,
                 count=4,
                 random_channel=False):
        super(RandomDistort, self).__init__()
        self.hue = hue
        self.saturation = saturation
        self.contrast = contrast
        self.brightness = brightness
        self.random_apply = random_apply
        self.count = count
        self.random_channel = random_channel
Q
qingqing01 已提交
360

W
wangxinxin08 已提交
361 362 363 364
    def apply_hue(self, img):
        low, high, prob = self.hue
        if np.random.uniform(0., 1.) < prob:
            return img
Q
qingqing01 已提交
365

W
wangxinxin08 已提交
366 367 368 369 370 371 372 373 374 375 376 377
        img = img.astype(np.float32)
        # it works, but result differ from HSV version
        delta = np.random.uniform(low, high)
        u = np.cos(delta * np.pi)
        w = np.sin(delta * np.pi)
        bt = np.array([[1.0, 0.0, 0.0], [0.0, u, -w], [0.0, w, u]])
        tyiq = np.array([[0.299, 0.587, 0.114], [0.596, -0.274, -0.321],
                         [0.211, -0.523, 0.311]])
        ityiq = np.array([[1.0, 0.956, 0.621], [1.0, -0.272, -0.647],
                          [1.0, -1.107, 1.705]])
        t = np.dot(np.dot(ityiq, bt), tyiq).T
        img = np.dot(img, t)
Q
qingqing01 已提交
378 379
        return img

W
wangxinxin08 已提交
380 381 382 383 384 385 386 387 388 389 390 391
    def apply_saturation(self, img):
        low, high, prob = self.saturation
        if np.random.uniform(0., 1.) < prob:
            return img
        delta = np.random.uniform(low, high)
        img = img.astype(np.float32)
        # it works, but result differ from HSV version
        gray = img * np.array([[[0.299, 0.587, 0.114]]], dtype=np.float32)
        gray = gray.sum(axis=2, keepdims=True)
        gray *= (1.0 - delta)
        img *= delta
        img += gray
Q
qingqing01 已提交
392 393
        return img

W
wangxinxin08 已提交
394 395 396 397 398 399 400
    def apply_contrast(self, img):
        low, high, prob = self.contrast
        if np.random.uniform(0., 1.) < prob:
            return img
        delta = np.random.uniform(low, high)
        img = img.astype(np.float32)
        img *= delta
Q
qingqing01 已提交
401 402
        return img

W
wangxinxin08 已提交
403 404 405 406 407 408 409 410
    def apply_brightness(self, img):
        low, high, prob = self.brightness
        if np.random.uniform(0., 1.) < prob:
            return img
        delta = np.random.uniform(low, high)
        img = img.astype(np.float32)
        img += delta
        return img
Q
qingqing01 已提交
411

W
wangxinxin08 已提交
412 413 414 415 416 417 418 419 420 421 422 423
    def apply(self, sample, context=None):
        img = sample['image']
        if self.random_apply:
            functions = [
                self.apply_brightness, self.apply_contrast,
                self.apply_saturation, self.apply_hue
            ]
            distortions = np.random.permutation(functions)[:self.count]
            for func in distortions:
                img = func(img)
            sample['image'] = img
            return sample
Q
qingqing01 已提交
424

W
wangxinxin08 已提交
425 426
        img = self.apply_brightness(img)
        mode = np.random.randint(0, 2)
Q
qingqing01 已提交
427

W
wangxinxin08 已提交
428 429
        if mode:
            img = self.apply_contrast(img)
Q
qingqing01 已提交
430

W
wangxinxin08 已提交
431 432
        img = self.apply_saturation(img)
        img = self.apply_hue(img)
Q
qingqing01 已提交
433

W
wangxinxin08 已提交
434 435
        if not mode:
            img = self.apply_contrast(img)
Q
qingqing01 已提交
436

W
wangxinxin08 已提交
437 438 439 440
        if self.random_channel:
            if np.random.randint(0, 2):
                img = img[..., np.random.permutation(3)]
        sample['image'] = img
Q
qingqing01 已提交
441 442 443 444
        return sample


@register_op
W
wangxinxin08 已提交
445 446
class AutoAugment(BaseOperator):
    def __init__(self, autoaug_type="v1"):
Q
qingqing01 已提交
447 448
        """
        Args:
W
wangxinxin08 已提交
449
            autoaug_type (str): autoaug type, support v0, v1, v2, v3, test
Q
qingqing01 已提交
450
        """
W
wangxinxin08 已提交
451 452
        super(AutoAugment, self).__init__()
        self.autoaug_type = autoaug_type
Q
qingqing01 已提交
453

W
wangxinxin08 已提交
454
    def apply(self, sample, context=None):
Q
qingqing01 已提交
455
        """
W
wangxinxin08 已提交
456 457 458 459 460 461 462 463 464
        Learning Data Augmentation Strategies for Object Detection, see https://arxiv.org/abs/1906.11172
        """
        im = sample['image']
        gt_bbox = sample['gt_bbox']
        if not isinstance(im, np.ndarray):
            raise TypeError("{}: image is not a numpy array.".format(self))
        if len(im.shape) != 3:
            raise ImageError("{}: image is not 3-dimensional.".format(self))
        if len(gt_bbox) == 0:
Q
qingqing01 已提交
465 466
            return sample

W
wangxinxin08 已提交
467 468 469 470 471 472
        height, width, _ = im.shape
        norm_gt_bbox = np.ones_like(gt_bbox, dtype=np.float32)
        norm_gt_bbox[:, 0] = gt_bbox[:, 1] / float(height)
        norm_gt_bbox[:, 1] = gt_bbox[:, 0] / float(width)
        norm_gt_bbox[:, 2] = gt_bbox[:, 3] / float(height)
        norm_gt_bbox[:, 3] = gt_bbox[:, 2] / float(width)
Q
qingqing01 已提交
473

W
wangxinxin08 已提交
474 475 476 477 478 479 480 481
        from .autoaugment_utils import distort_image_with_autoaugment
        im, norm_gt_bbox = distort_image_with_autoaugment(im, norm_gt_bbox,
                                                          self.autoaug_type)

        gt_bbox[:, 0] = norm_gt_bbox[:, 1] * float(width)
        gt_bbox[:, 1] = norm_gt_bbox[:, 0] * float(height)
        gt_bbox[:, 2] = norm_gt_bbox[:, 3] * float(width)
        gt_bbox[:, 3] = norm_gt_bbox[:, 2] * float(height)
Q
qingqing01 已提交
482 483 484 485 486 487 488

        sample['image'] = im
        sample['gt_bbox'] = gt_bbox
        return sample


@register_op
W
wangxinxin08 已提交
489 490
class RandomFlip(BaseOperator):
    def __init__(self, prob=0.5):
Q
qingqing01 已提交
491 492
        """
        Args:
W
wangxinxin08 已提交
493
            prob (float): the probability of flipping image
Q
qingqing01 已提交
494
        """
W
wangxinxin08 已提交
495 496 497 498
        super(RandomFlip, self).__init__()
        self.prob = prob
        if not (isinstance(self.prob, float)):
            raise TypeError("{}: input type is invalid.".format(self))
Q
qingqing01 已提交
499

W
wangxinxin08 已提交
500 501 502 503 504
    def apply_segm(self, segms, height, width):
        def _flip_poly(poly, width):
            flipped_poly = np.array(poly)
            flipped_poly[0::2] = width - np.array(poly[0::2])
            return flipped_poly.tolist()
Q
qingqing01 已提交
505

W
wangxinxin08 已提交
506 507 508 509 510 511 512
        def _flip_rle(rle, height, width):
            if 'counts' in rle and type(rle['counts']) == list:
                rle = mask_util.frPyObjects(rle, height, width)
            mask = mask_util.decode(rle)
            mask = mask[:, ::-1]
            rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8))
            return rle
Q
qingqing01 已提交
513

W
wangxinxin08 已提交
514 515 516 517 518 519 520 521 522 523
        flipped_segms = []
        for segm in segms:
            if is_poly(segm):
                # Polygon format
                flipped_segms.append([_flip_poly(poly, width) for poly in segm])
            else:
                # RLE format
                import pycocotools.mask as mask_util
                flipped_segms.append(_flip_rle(segm, height, width))
        return flipped_segms
Q
qingqing01 已提交
524

W
wangxinxin08 已提交
525 526 527 528 529 530
    def apply_keypoint(self, gt_keypoint, width):
        for i in range(gt_keypoint.shape[1]):
            if i % 2 == 0:
                old_x = gt_keypoint[:, i].copy()
                gt_keypoint[:, i] = width - old_x
        return gt_keypoint
Q
qingqing01 已提交
531

W
wangxinxin08 已提交
532 533
    def apply_image(self, image):
        return image[:, ::-1, :]
Q
qingqing01 已提交
534

W
wangxinxin08 已提交
535 536 537 538 539 540
    def apply_bbox(self, bbox, width):
        oldx1 = bbox[:, 0].copy()
        oldx2 = bbox[:, 2].copy()
        bbox[:, 0] = width - oldx2
        bbox[:, 2] = width - oldx1
        return bbox
Q
qingqing01 已提交
541

C
cnn 已提交
542 543 544 545 546
    def apply_rbox(self, bbox, width):
        oldx1 = bbox[:, 0].copy()
        oldx2 = bbox[:, 2].copy()
        oldx3 = bbox[:, 4].copy()
        oldx4 = bbox[:, 6].copy()
C
cnn 已提交
547 548
        bbox[:, 0] = width - oldx1
        bbox[:, 2] = width - oldx2
C
cnn 已提交
549 550
        bbox[:, 4] = width - oldx3
        bbox[:, 6] = width - oldx4
C
cnn 已提交
551
        bbox = [bbox_utils.get_best_begin_point_single(e) for e in bbox]
C
cnn 已提交
552 553
        return bbox

W
wangxinxin08 已提交
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
    def apply(self, sample, context=None):
        """Filp the image and bounding box.
        Operators:
            1. Flip the image numpy.
            2. Transform the bboxes' x coordinates.
              (Must judge whether the coordinates are normalized!)
            3. Transform the segmentations' x coordinates.
              (Must judge whether the coordinates are normalized!)
        Output:
            sample: the image, bounding box and segmentation part
                    in sample are flipped.
        """
        if np.random.uniform(0, 1) < self.prob:
            im = sample['image']
            height, width = im.shape[:2]
            im = self.apply_image(im)
            if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
                sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], width)
            if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
                sample['gt_poly'] = self.apply_segm(sample['gt_poly'], height,
                                                    width)
            if 'gt_keypoint' in sample and len(sample['gt_keypoint']) > 0:
                sample['gt_keypoint'] = self.apply_keypoint(
                    sample['gt_keypoint'], width)

            if 'semantic' in sample and sample['semantic']:
                sample['semantic'] = sample['semantic'][:, ::-1]

            if 'gt_segm' in sample and sample['gt_segm'].any():
                sample['gt_segm'] = sample['gt_segm'][:, :, ::-1]

C
cnn 已提交
585
            if 'gt_rbox2poly' in sample and sample['gt_rbox2poly'].any():
C
cnn 已提交
586
                sample['gt_rbox2poly'] = self.apply_rbox(sample['gt_rbox2poly'],
C
cnn 已提交
587 588
                                                         width)

W
wangxinxin08 已提交
589 590
            sample['flipped'] = True
            sample['image'] = im
Q
qingqing01 已提交
591 592 593 594
        return sample


@register_op
W
wangxinxin08 已提交
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
class Resize(BaseOperator):
    def __init__(self, target_size, keep_ratio, interp=cv2.INTER_LINEAR):
        """
        Resize image to target size. if keep_ratio is True, 
        resize the image's long side to the maximum of target_size
        if keep_ratio is False, resize the image to target size(h, w)
        Args:
            target_size (int|list): image target size
            keep_ratio (bool): whether keep_ratio or not, default true
            interp (int): the interpolation method
        """
        super(Resize, self).__init__()
        self.keep_ratio = keep_ratio
        self.interp = interp
        if not isinstance(target_size, (Integral, Sequence)):
            raise TypeError(
                "Type of target_size is invalid. Must be Integer or List or Tuple, now is {}".
                format(type(target_size)))
        if isinstance(target_size, Integral):
            target_size = [target_size, target_size]
        self.target_size = target_size
Q
qingqing01 已提交
616

W
wangxinxin08 已提交
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
    def apply_image(self, image, scale):
        im_scale_x, im_scale_y = scale

        return cv2.resize(
            image,
            None,
            None,
            fx=im_scale_x,
            fy=im_scale_y,
            interpolation=self.interp)

    def apply_bbox(self, bbox, scale, size):
        im_scale_x, im_scale_y = scale
        resize_w, resize_h = size
        bbox[:, 0::2] *= im_scale_x
        bbox[:, 1::2] *= im_scale_y
        bbox[:, 0::2] = np.clip(bbox[:, 0::2], 0, resize_w)
        bbox[:, 1::2] = np.clip(bbox[:, 1::2], 0, resize_h)
        return bbox

    def apply_segm(self, segms, im_size, scale):
        def _resize_poly(poly, im_scale_x, im_scale_y):
W
wangguanzhong 已提交
639
            resized_poly = np.array(poly).astype('float32')
W
wangxinxin08 已提交
640 641 642 643 644 645 646
            resized_poly[0::2] *= im_scale_x
            resized_poly[1::2] *= im_scale_y
            return resized_poly.tolist()

        def _resize_rle(rle, im_h, im_w, im_scale_x, im_scale_y):
            if 'counts' in rle and type(rle['counts']) == list:
                rle = mask_util.frPyObjects(rle, im_h, im_w)
Q
qingqing01 已提交
647

W
wangxinxin08 已提交
648 649 650 651 652 653 654 655 656 657
            mask = mask_util.decode(rle)
            mask = cv2.resize(
                image,
                None,
                None,
                fx=im_scale_x,
                fy=im_scale_y,
                interpolation=self.interp)
            rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8))
            return rle
Q
qingqing01 已提交
658

W
wangxinxin08 已提交
659 660 661 662 663 664 665 666 667 668 669 670 671 672
        im_h, im_w = im_size
        im_scale_x, im_scale_y = scale
        resized_segms = []
        for segm in segms:
            if is_poly(segm):
                # Polygon format
                resized_segms.append([
                    _resize_poly(poly, im_scale_x, im_scale_y) for poly in segm
                ])
            else:
                # RLE format
                import pycocotools.mask as mask_util
                resized_segms.append(
                    _resize_rle(segm, im_h, im_w, im_scale_x, im_scale_y))
Q
qingqing01 已提交
673

W
wangxinxin08 已提交
674
        return resized_segms
Q
qingqing01 已提交
675

W
wangxinxin08 已提交
676 677 678 679 680 681 682 683
    def apply(self, sample, context=None):
        """ Resize the image numpy.
        """
        im = sample['image']
        if not isinstance(im, np.ndarray):
            raise TypeError("{}: image type is not numpy.".format(self))
        if len(im.shape) != 3:
            raise ImageError('{}: image is not 3-dimensional.'.format(self))
Q
qingqing01 已提交
684

W
wangxinxin08 已提交
685 686 687
        # apply image
        im_shape = im.shape
        if self.keep_ratio:
Q
qingqing01 已提交
688

W
wangxinxin08 已提交
689 690
            im_size_min = np.min(im_shape[0:2])
            im_size_max = np.max(im_shape[0:2])
Q
qingqing01 已提交
691

W
wangxinxin08 已提交
692 693
            target_size_min = np.min(self.target_size)
            target_size_max = np.max(self.target_size)
Q
qingqing01 已提交
694

W
wangxinxin08 已提交
695 696
            im_scale = min(target_size_min / im_size_min,
                           target_size_max / im_size_max)
Q
qingqing01 已提交
697

W
wangxinxin08 已提交
698 699
            resize_h = im_scale * float(im_shape[0])
            resize_w = im_scale * float(im_shape[1])
Q
qingqing01 已提交
700

W
wangxinxin08 已提交
701 702
            im_scale_x = im_scale
            im_scale_y = im_scale
Q
qingqing01 已提交
703
        else:
W
wangxinxin08 已提交
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
            resize_h, resize_w = self.target_size
            im_scale_y = resize_h / im_shape[0]
            im_scale_x = resize_w / im_shape[1]

        im = self.apply_image(sample['image'], [im_scale_x, im_scale_y])
        sample['image'] = im
        sample['im_shape'] = np.asarray([resize_h, resize_w], dtype=np.float32)
        if 'scale_factor' in sample:
            scale_factor = sample['scale_factor']
            sample['scale_factor'] = np.asarray(
                [scale_factor[0] * im_scale_y, scale_factor[1] * im_scale_x],
                dtype=np.float32)
        else:
            sample['scale_factor'] = np.asarray(
                [im_scale_y, im_scale_x], dtype=np.float32)

        # apply bbox
        if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
            sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'],
                                                [im_scale_x, im_scale_y],
                                                [resize_w, resize_h])

C
cnn 已提交
726 727 728 729 730 731 732 733 734 735
        # apply rbox
        if 'gt_rbox2poly' in sample:
            if np.array(sample['gt_rbox2poly']).shape[1] != 8:
                logger.warn(
                    "gt_rbox2poly's length shoule be 8, but actually is {}".
                    format(len(sample['gt_rbox2poly'])))
            sample['gt_rbox2poly'] = self.apply_bbox(sample['gt_rbox2poly'],
                                                     [im_scale_x, im_scale_y],
                                                     [resize_w, resize_h])

W
wangxinxin08 已提交
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
        # apply polygon
        if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
            sample['gt_poly'] = self.apply_segm(sample['gt_poly'], im_shape[:2],
                                                [im_scale_x, im_scale_y])

        # apply semantic
        if 'semantic' in sample and sample['semantic']:
            semantic = sample['semantic']
            semantic = cv2.resize(
                semantic.astype('float32'),
                None,
                None,
                fx=im_scale_x,
                fy=im_scale_y,
                interpolation=self.interp)
            semantic = np.asarray(semantic).astype('int32')
            semantic = np.expand_dims(semantic, 0)
            sample['semantic'] = semantic

        # apply gt_segm
        if 'gt_segm' in sample and len(sample['gt_segm']) > 0:
            masks = [
                cv2.resize(
                    gt_segm,
                    None,
                    None,
                    fx=im_scale_x,
                    fy=im_scale_y,
                    interpolation=cv2.INTER_NEAREST)
                for gt_segm in sample['gt_segm']
            ]
            sample['gt_segm'] = np.asarray(masks).astype(np.uint8)
Q
qingqing01 已提交
768 769 770 771 772

        return sample


@register_op
W
wangxinxin08 已提交
773
class MultiscaleTestResize(BaseOperator):
Q
qingqing01 已提交
774
    def __init__(self,
W
wangxinxin08 已提交
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
                 origin_target_size=[800, 1333],
                 target_size=[],
                 interp=cv2.INTER_LINEAR,
                 use_flip=True):
        """
        Rescale image to the each size in target size, and capped at max_size.
        Args:
            origin_target_size (list): origin target size of image
            target_size (list): A list of target sizes of image.
            interp (int): the interpolation method.
            use_flip (bool): whether use flip augmentation.
        """
        super(MultiscaleTestResize, self).__init__()
        self.interp = interp
        self.use_flip = use_flip
Q
qingqing01 已提交
790

W
wangxinxin08 已提交
791 792 793 794 795
        if not isinstance(target_size, Sequence):
            raise TypeError(
                "Type of target_size is invalid. Must be List or Tuple, now is {}".
                format(type(target_size)))
        self.target_size = target_size
Q
qingqing01 已提交
796

W
wangxinxin08 已提交
797 798 799 800
        if not isinstance(origin_target_size, Sequence):
            raise TypeError(
                "Type of origin_target_size is invalid. Must be List or Tuple, now is {}".
                format(type(origin_target_size)))
Q
qingqing01 已提交
801

W
wangxinxin08 已提交
802
        self.origin_target_size = origin_target_size
Q
qingqing01 已提交
803

W
wangxinxin08 已提交
804 805 806 807 808 809 810 811 812 813
    def apply(self, sample, context=None):
        """ Resize the image numpy for multi-scale test.
        """
        samples = []
        resizer = Resize(
            self.origin_target_size, keep_ratio=True, interp=self.interp)
        samples.append(resizer(sample.copy(), context))
        if self.use_flip:
            flipper = RandomFlip(1.1)
            samples.append(flipper(sample.copy(), context=context))
Q
qingqing01 已提交
814

W
wangxinxin08 已提交
815 816 817
        for size in self.target_size:
            resizer = Resize(size, keep_ratio=True, interp=self.interp)
            samples.append(resizer(sample.copy(), context))
Q
qingqing01 已提交
818

W
wangxinxin08 已提交
819
        return samples
Q
qingqing01 已提交
820 821


W
wangxinxin08 已提交
822 823
@register_op
class RandomResize(BaseOperator):
Q
qingqing01 已提交
824
    def __init__(self,
W
wangxinxin08 已提交
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
                 target_size,
                 keep_ratio=True,
                 interp=cv2.INTER_LINEAR,
                 random_size=True,
                 random_interp=False):
        """
        Resize image to target size randomly. random target_size and interpolation method
        Args:
            target_size (int, list, tuple): image target size, if random size is True, must be list or tuple
            keep_ratio (bool): whether keep_raio or not, default true
            interp (int): the interpolation method
            random_size (bool): whether random select target size of image
            random_interp (bool): whether random select interpolation method
        """
        super(RandomResize, self).__init__()
        self.keep_ratio = keep_ratio
        self.interp = interp
        self.interps = [
            cv2.INTER_NEAREST,
            cv2.INTER_LINEAR,
            cv2.INTER_AREA,
            cv2.INTER_CUBIC,
            cv2.INTER_LANCZOS4,
        ]
        assert isinstance(target_size, (
            Integral, Sequence)), "target_size must be Integer, List or Tuple"
        if random_size and not isinstance(target_size, Sequence):
            raise TypeError(
                "Type of target_size is invalid when random_size is True. Must be List or Tuple, now is {}".
                format(type(target_size)))
        self.target_size = target_size
        self.random_size = random_size
        self.random_interp = random_interp
Q
qingqing01 已提交
858

W
wangxinxin08 已提交
859 860 861 862 863 864 865
    def apply(self, sample, context=None):
        """ Resize the image numpy.
        """
        if self.random_size:
            target_size = random.choice(self.target_size)
        else:
            target_size = self.target_size
Q
qingqing01 已提交
866

W
wangxinxin08 已提交
867 868 869 870 871 872 873
        if self.random_interp:
            interp = random.choice(self.interps)
        else:
            interp = self.interp

        resizer = Resize(target_size, self.keep_ratio, interp)
        return resizer(sample, context=context)
Q
qingqing01 已提交
874 875 876 877 878 879 880 881 882 883 884


@register_op
class RandomExpand(BaseOperator):
    """Random expand the canvas.
    Args:
        ratio (float): maximum expansion ratio.
        prob (float): probability to expand.
        fill_value (list): color value used to fill the canvas. in RGB order.
    """

W
wangxinxin08 已提交
885
    def __init__(self, ratio=4., prob=0.5, fill_value=(127.5, 127.5, 127.5)):
Q
qingqing01 已提交
886 887 888 889 890 891 892 893 894 895 896 897
        super(RandomExpand, self).__init__()
        assert ratio > 1.01, "expand ratio must be larger than 1.01"
        self.ratio = ratio
        self.prob = prob
        assert isinstance(fill_value, (Number, Sequence)), \
            "fill value must be either float or sequence"
        if isinstance(fill_value, Number):
            fill_value = (fill_value, ) * 3
        if not isinstance(fill_value, tuple):
            fill_value = tuple(fill_value)
        self.fill_value = fill_value

W
wangxinxin08 已提交
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
    def apply(self, sample, context=None):
        if np.random.uniform(0., 1.) < self.prob:
            return sample

        im = sample['image']
        height, width = im.shape[:2]
        ratio = np.random.uniform(1., self.ratio)
        h = int(height * ratio)
        w = int(width * ratio)
        if not h > height or not w > width:
            return sample
        y = np.random.randint(0, h - height)
        x = np.random.randint(0, w - width)
        offsets, size = [x, y], [h, w]

        pad = Pad(size,
                  pad_mode=-1,
                  offsets=offsets,
                  fill_value=self.fill_value)

        return pad(sample, context=context)


@register_op
class CropWithSampling(BaseOperator):
    def __init__(self, batch_sampler, satisfy_all=False, avoid_no_bbox=True):
        """
        Args:
            batch_sampler (list): Multiple sets of different
                                  parameters for cropping.
            satisfy_all (bool): whether all boxes must satisfy.
            e.g.[[1, 1, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0],
                 [1, 50, 0.3, 1.0, 0.5, 2.0, 0.1, 1.0],
                 [1, 50, 0.3, 1.0, 0.5, 2.0, 0.3, 1.0],
                 [1, 50, 0.3, 1.0, 0.5, 2.0, 0.5, 1.0],
                 [1, 50, 0.3, 1.0, 0.5, 2.0, 0.7, 1.0],
                 [1, 50, 0.3, 1.0, 0.5, 2.0, 0.9, 1.0],
                 [1, 50, 0.3, 1.0, 0.5, 2.0, 0.0, 1.0]]
           [max sample, max trial, min scale, max scale,
            min aspect ratio, max aspect ratio,
            min overlap, max overlap]
            avoid_no_bbox (bool): whether to to avoid the
                                  situation where the box does not appear.
        """
        super(CropWithSampling, self).__init__()
        self.batch_sampler = batch_sampler
        self.satisfy_all = satisfy_all
        self.avoid_no_bbox = avoid_no_bbox

    def apply(self, sample, context):
        """
        Crop the image and modify bounding box.
        Operators:
            1. Scale the image width and height.
            2. Crop the image according to a radom sample.
            3. Rescale the bounding box.
            4. Determine if the new bbox is satisfied in the new image.
        Returns:
            sample: the image, bounding box are replaced.
        """
        assert 'image' in sample, "image data not found"
        im = sample['image']
        gt_bbox = sample['gt_bbox']
        gt_class = sample['gt_class']
        im_height, im_width = im.shape[:2]
        gt_score = None
        if 'gt_score' in sample:
            gt_score = sample['gt_score']
        sampled_bbox = []
        gt_bbox = gt_bbox.tolist()
        for sampler in self.batch_sampler:
            found = 0
            for i in range(sampler[1]):
                if found >= sampler[0]:
                    break
                sample_bbox = generate_sample_bbox(sampler)
                if satisfy_sample_constraint(sampler, sample_bbox, gt_bbox,
                                             self.satisfy_all):
                    sampled_bbox.append(sample_bbox)
                    found = found + 1
        im = np.array(im)
        while sampled_bbox:
            idx = int(np.random.uniform(0, len(sampled_bbox)))
            sample_bbox = sampled_bbox.pop(idx)
            sample_bbox = clip_bbox(sample_bbox)
            crop_bbox, crop_class, crop_score = \
                filter_and_process(sample_bbox, gt_bbox, gt_class, scores=gt_score)
            if self.avoid_no_bbox:
                if len(crop_bbox) < 1:
                    continue
            xmin = int(sample_bbox[0] * im_width)
            xmax = int(sample_bbox[2] * im_width)
            ymin = int(sample_bbox[1] * im_height)
            ymax = int(sample_bbox[3] * im_height)
            im = im[ymin:ymax, xmin:xmax]
            sample['image'] = im
            sample['gt_bbox'] = crop_bbox
            sample['gt_class'] = crop_class
            sample['gt_score'] = crop_score
            return sample
        return sample


@register_op
class CropWithDataAchorSampling(BaseOperator):
    def __init__(self,
                 batch_sampler,
                 anchor_sampler=None,
                 target_size=None,
                 das_anchor_scales=[16, 32, 64, 128],
                 sampling_prob=0.5,
                 min_size=8.,
                 avoid_no_bbox=True):
        """
        Args:
            anchor_sampler (list): anchor_sampling sets of different
                                  parameters for cropping.
            batch_sampler (list): Multiple sets of different
                                  parameters for cropping.
              e.g.[[1, 10, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.2, 0.0]]
                  [[1, 50, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0],
                   [1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0],
                   [1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0],
                   [1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0],
                   [1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0]]
              [max sample, max trial, min scale, max scale,
               min aspect ratio, max aspect ratio,
               min overlap, max overlap, min coverage, max coverage]
1026
            target_size (int): target image size.
W
wangxinxin08 已提交
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
            das_anchor_scales (list[float]): a list of anchor scales in data
                anchor smapling.
            min_size (float): minimum size of sampled bbox.
            avoid_no_bbox (bool): whether to to avoid the
                                  situation where the box does not appear.
        """
        super(CropWithDataAchorSampling, self).__init__()
        self.anchor_sampler = anchor_sampler
        self.batch_sampler = batch_sampler
        self.target_size = target_size
        self.sampling_prob = sampling_prob
        self.min_size = min_size
        self.avoid_no_bbox = avoid_no_bbox
        self.das_anchor_scales = np.array(das_anchor_scales)

    def apply(self, sample, context):
        """
        Crop the image and modify bounding box.
        Operators:
            1. Scale the image width and height.
            2. Crop the image according to a radom sample.
            3. Rescale the bounding box.
            4. Determine if the new bbox is satisfied in the new image.
        Returns:
            sample: the image, bounding box are replaced.
        """
        assert 'image' in sample, "image data not found"
        im = sample['image']
        gt_bbox = sample['gt_bbox']
        gt_class = sample['gt_class']
        image_height, image_width = im.shape[:2]
1058 1059 1060 1061
        gt_bbox[:, 0] /= image_width
        gt_bbox[:, 1] /= image_height
        gt_bbox[:, 2] /= image_width
        gt_bbox[:, 3] /= image_height
W
wangxinxin08 已提交
1062 1063 1064 1065 1066
        gt_score = None
        if 'gt_score' in sample:
            gt_score = sample['gt_score']
        sampled_bbox = []
        gt_bbox = gt_bbox.tolist()
Q
qingqing01 已提交
1067

W
wangxinxin08 已提交
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
        prob = np.random.uniform(0., 1.)
        if prob > self.sampling_prob:  # anchor sampling
            assert self.anchor_sampler
            for sampler in self.anchor_sampler:
                found = 0
                for i in range(sampler[1]):
                    if found >= sampler[0]:
                        break
                    sample_bbox = data_anchor_sampling(
                        gt_bbox, image_width, image_height,
                        self.das_anchor_scales, self.target_size)
                    if sample_bbox == 0:
                        break
                    if satisfy_sample_constraint_coverage(sampler, sample_bbox,
                                                          gt_bbox):
                        sampled_bbox.append(sample_bbox)
                        found = found + 1
            im = np.array(im)
            while sampled_bbox:
                idx = int(np.random.uniform(0, len(sampled_bbox)))
                sample_bbox = sampled_bbox.pop(idx)
Q
qingqing01 已提交
1089

W
wangxinxin08 已提交
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
                if 'gt_keypoint' in sample.keys():
                    keypoints = (sample['gt_keypoint'],
                                 sample['keypoint_ignore'])
                    crop_bbox, crop_class, crop_score, gt_keypoints = \
                        filter_and_process(sample_bbox, gt_bbox, gt_class,
                                scores=gt_score,
                                keypoints=keypoints)
                else:
                    crop_bbox, crop_class, crop_score = filter_and_process(
                        sample_bbox, gt_bbox, gt_class, scores=gt_score)
                crop_bbox, crop_class, crop_score = bbox_area_sampling(
                    crop_bbox, crop_class, crop_score, self.target_size,
                    self.min_size)
Q
qingqing01 已提交
1103

W
wangxinxin08 已提交
1104 1105 1106 1107 1108
                if self.avoid_no_bbox:
                    if len(crop_bbox) < 1:
                        continue
                im = crop_image_sampling(im, sample_bbox, image_width,
                                         image_height, self.target_size)
1109 1110 1111 1112 1113
                height, width = im.shape[:2]
                crop_bbox[:, 0] *= width
                crop_bbox[:, 1] *= height
                crop_bbox[:, 2] *= width
                crop_bbox[:, 3] *= height
W
wangxinxin08 已提交
1114 1115 1116
                sample['image'] = im
                sample['gt_bbox'] = crop_bbox
                sample['gt_class'] = crop_class
1117 1118
                if 'gt_score' in sample:
                    sample['gt_score'] = crop_score
W
wangxinxin08 已提交
1119 1120 1121 1122
                if 'gt_keypoint' in sample.keys():
                    sample['gt_keypoint'] = gt_keypoints[0]
                    sample['keypoint_ignore'] = gt_keypoints[1]
                return sample
Q
qingqing01 已提交
1123 1124
            return sample

W
wangxinxin08 已提交
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
        else:
            for sampler in self.batch_sampler:
                found = 0
                for i in range(sampler[1]):
                    if found >= sampler[0]:
                        break
                    sample_bbox = generate_sample_bbox_square(
                        sampler, image_width, image_height)
                    if satisfy_sample_constraint_coverage(sampler, sample_bbox,
                                                          gt_bbox):
                        sampled_bbox.append(sample_bbox)
                        found = found + 1
            im = np.array(im)
            while sampled_bbox:
                idx = int(np.random.uniform(0, len(sampled_bbox)))
                sample_bbox = sampled_bbox.pop(idx)
                sample_bbox = clip_bbox(sample_bbox)
Q
qingqing01 已提交
1142

W
wangxinxin08 已提交
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
                if 'gt_keypoint' in sample.keys():
                    keypoints = (sample['gt_keypoint'],
                                 sample['keypoint_ignore'])
                    crop_bbox, crop_class, crop_score, gt_keypoints = \
                        filter_and_process(sample_bbox, gt_bbox, gt_class,
                                scores=gt_score,
                                keypoints=keypoints)
                else:
                    crop_bbox, crop_class, crop_score = filter_and_process(
                        sample_bbox, gt_bbox, gt_class, scores=gt_score)
                # sampling bbox according the bbox area
                crop_bbox, crop_class, crop_score = bbox_area_sampling(
                    crop_bbox, crop_class, crop_score, self.target_size,
                    self.min_size)
Q
qingqing01 已提交
1157

W
wangxinxin08 已提交
1158 1159 1160 1161 1162 1163 1164 1165
                if self.avoid_no_bbox:
                    if len(crop_bbox) < 1:
                        continue
                xmin = int(sample_bbox[0] * image_width)
                xmax = int(sample_bbox[2] * image_width)
                ymin = int(sample_bbox[1] * image_height)
                ymax = int(sample_bbox[3] * image_height)
                im = im[ymin:ymax, xmin:xmax]
1166 1167 1168 1169 1170
                height, width = im.shape[:2]
                crop_bbox[:, 0] *= width
                crop_bbox[:, 1] *= height
                crop_bbox[:, 2] *= width
                crop_bbox[:, 3] *= height
W
wangxinxin08 已提交
1171 1172 1173
                sample['image'] = im
                sample['gt_bbox'] = crop_bbox
                sample['gt_class'] = crop_class
1174 1175
                if 'gt_score' in sample:
                    sample['gt_score'] = crop_score
W
wangxinxin08 已提交
1176 1177 1178 1179 1180
                if 'gt_keypoint' in sample.keys():
                    sample['gt_keypoint'] = gt_keypoints[0]
                    sample['keypoint_ignore'] = gt_keypoints[1]
                return sample
            return sample
Q
qingqing01 已提交
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283


@register_op
class RandomCrop(BaseOperator):
    """Random crop image and bboxes.
    Args:
        aspect_ratio (list): aspect ratio of cropped region.
            in [min, max] format.
        thresholds (list): iou thresholds for decide a valid bbox crop.
        scaling (list): ratio between a cropped region and the original image.
             in [min, max] format.
        num_attempts (int): number of tries before giving up.
        allow_no_crop (bool): allow return without actually cropping them.
        cover_all_box (bool): ensure all bboxes are covered in the final crop.
        is_mask_crop(bool): whether crop the segmentation.
    """

    def __init__(self,
                 aspect_ratio=[.5, 2.],
                 thresholds=[.0, .1, .3, .5, .7, .9],
                 scaling=[.3, 1.],
                 num_attempts=50,
                 allow_no_crop=True,
                 cover_all_box=False,
                 is_mask_crop=False):
        super(RandomCrop, self).__init__()
        self.aspect_ratio = aspect_ratio
        self.thresholds = thresholds
        self.scaling = scaling
        self.num_attempts = num_attempts
        self.allow_no_crop = allow_no_crop
        self.cover_all_box = cover_all_box
        self.is_mask_crop = is_mask_crop

    def crop_segms(self, segms, valid_ids, crop, height, width):
        def _crop_poly(segm, crop):
            xmin, ymin, xmax, ymax = crop
            crop_coord = [xmin, ymin, xmin, ymax, xmax, ymax, xmax, ymin]
            crop_p = np.array(crop_coord).reshape(4, 2)
            crop_p = Polygon(crop_p)

            crop_segm = list()
            for poly in segm:
                poly = np.array(poly).reshape(len(poly) // 2, 2)
                polygon = Polygon(poly)
                if not polygon.is_valid:
                    exterior = polygon.exterior
                    multi_lines = exterior.intersection(exterior)
                    polygons = shapely.ops.polygonize(multi_lines)
                    polygon = MultiPolygon(polygons)
                multi_polygon = list()
                if isinstance(polygon, MultiPolygon):
                    multi_polygon = copy.deepcopy(polygon)
                else:
                    multi_polygon.append(copy.deepcopy(polygon))
                for per_polygon in multi_polygon:
                    inter = per_polygon.intersection(crop_p)
                    if not inter:
                        continue
                    if isinstance(inter, (MultiPolygon, GeometryCollection)):
                        for part in inter:
                            if not isinstance(part, Polygon):
                                continue
                            part = np.squeeze(
                                np.array(part.exterior.coords[:-1]).reshape(1,
                                                                            -1))
                            part[0::2] -= xmin
                            part[1::2] -= ymin
                            crop_segm.append(part.tolist())
                    elif isinstance(inter, Polygon):
                        crop_poly = np.squeeze(
                            np.array(inter.exterior.coords[:-1]).reshape(1, -1))
                        crop_poly[0::2] -= xmin
                        crop_poly[1::2] -= ymin
                        crop_segm.append(crop_poly.tolist())
                    else:
                        continue
            return crop_segm

        def _crop_rle(rle, crop, height, width):
            if 'counts' in rle and type(rle['counts']) == list:
                rle = mask_util.frPyObjects(rle, height, width)
            mask = mask_util.decode(rle)
            mask = mask[crop[1]:crop[3], crop[0]:crop[2]]
            rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8))
            return rle

        crop_segms = []
        for id in valid_ids:
            segm = segms[id]
            if is_poly(segm):
                import copy
                import shapely.ops
                from shapely.geometry import Polygon, MultiPolygon, GeometryCollection
                logging.getLogger("shapely").setLevel(logging.WARNING)
                # Polygon format
                crop_segms.append(_crop_poly(segm, crop))
            else:
                # RLE format
                import pycocotools.mask as mask_util
                crop_segms.append(_crop_rle(segm, crop, height, width))
        return crop_segms

W
wangxinxin08 已提交
1284
    def apply(self, sample, context=None):
Q
qingqing01 已提交
1285 1286 1287
        if 'gt_bbox' in sample and len(sample['gt_bbox']) == 0:
            return sample

W
wangxinxin08 已提交
1288
        h, w = sample['image'].shape[:2]
Q
qingqing01 已提交
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
        gt_bbox = sample['gt_bbox']

        # NOTE Original method attempts to generate one candidate for each
        # threshold then randomly sample one from the resulting list.
        # Here a short circuit approach is taken, i.e., randomly choose a
        # threshold and attempt to find a valid crop, and simply return the
        # first one found.
        # The probability is not exactly the same, kinda resembling the
        # "Monty Hall" problem. Actually carrying out the attempts will affect
        # observability (just like opening doors in the "Monty Hall" game).
        thresholds = list(self.thresholds)
        if self.allow_no_crop:
            thresholds.append('no_crop')
        np.random.shuffle(thresholds)

        for thresh in thresholds:
            if thresh == 'no_crop':
                return sample

            found = False
            for i in range(self.num_attempts):
                scale = np.random.uniform(*self.scaling)
                if self.aspect_ratio is not None:
                    min_ar, max_ar = self.aspect_ratio
                    aspect_ratio = np.random.uniform(
                        max(min_ar, scale**2), min(max_ar, scale**-2))
                    h_scale = scale / np.sqrt(aspect_ratio)
                    w_scale = scale * np.sqrt(aspect_ratio)
                else:
                    h_scale = np.random.uniform(*self.scaling)
                    w_scale = np.random.uniform(*self.scaling)
                crop_h = h * h_scale
                crop_w = w * w_scale
                if self.aspect_ratio is None:
                    if crop_h / crop_w < 0.5 or crop_h / crop_w > 2.0:
                        continue

                crop_h = int(crop_h)
                crop_w = int(crop_w)
                crop_y = np.random.randint(0, h - crop_h)
                crop_x = np.random.randint(0, w - crop_w)
                crop_box = [crop_x, crop_y, crop_x + crop_w, crop_y + crop_h]
                iou = self._iou_matrix(
                    gt_bbox, np.array(
                        [crop_box], dtype=np.float32))
                if iou.max() < thresh:
                    continue

                if self.cover_all_box and iou.min() < thresh:
                    continue

                cropped_box, valid_ids = self._crop_box_with_center_constraint(
                    gt_bbox, np.array(
                        crop_box, dtype=np.float32))
                if valid_ids.size > 0:
                    found = True
                    break

            if found:
                if self.is_mask_crop and 'gt_poly' in sample and len(sample[
                        'gt_poly']) > 0:
                    crop_polys = self.crop_segms(
                        sample['gt_poly'],
                        valid_ids,
                        np.array(
                            crop_box, dtype=np.int64),
                        h,
                        w)
                    if [] in crop_polys:
                        delete_id = list()
                        valid_polys = list()
                        for id, crop_poly in enumerate(crop_polys):
                            if crop_poly == []:
                                delete_id.append(id)
                            else:
                                valid_polys.append(crop_poly)
                        valid_ids = np.delete(valid_ids, delete_id)
                        if len(valid_polys) == 0:
                            return sample
                        sample['gt_poly'] = valid_polys
                    else:
                        sample['gt_poly'] = crop_polys
W
wangxinxin08 已提交
1371 1372 1373 1374 1375 1376 1377

                if 'gt_segm' in sample:
                    sample['gt_segm'] = self._crop_segm(sample['gt_segm'],
                                                        crop_box)
                    sample['gt_segm'] = np.take(
                        sample['gt_segm'], valid_ids, axis=0)

Q
qingqing01 已提交
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
                sample['image'] = self._crop_image(sample['image'], crop_box)
                sample['gt_bbox'] = np.take(cropped_box, valid_ids, axis=0)
                sample['gt_class'] = np.take(
                    sample['gt_class'], valid_ids, axis=0)
                if 'gt_score' in sample:
                    sample['gt_score'] = np.take(
                        sample['gt_score'], valid_ids, axis=0)

                if 'is_crowd' in sample:
                    sample['is_crowd'] = np.take(
                        sample['is_crowd'], valid_ids, axis=0)
                return sample

        return sample

    def _iou_matrix(self, a, b):
        tl_i = np.maximum(a[:, np.newaxis, :2], b[:, :2])
        br_i = np.minimum(a[:, np.newaxis, 2:], b[:, 2:])

        area_i = np.prod(br_i - tl_i, axis=2) * (tl_i < br_i).all(axis=2)
        area_a = np.prod(a[:, 2:] - a[:, :2], axis=1)
        area_b = np.prod(b[:, 2:] - b[:, :2], axis=1)
        area_o = (area_a[:, np.newaxis] + area_b - area_i)
        return area_i / (area_o + 1e-10)

    def _crop_box_with_center_constraint(self, box, crop):
        cropped_box = box.copy()

        cropped_box[:, :2] = np.maximum(box[:, :2], crop[:2])
        cropped_box[:, 2:] = np.minimum(box[:, 2:], crop[2:])
        cropped_box[:, :2] -= crop[:2]
        cropped_box[:, 2:] -= crop[:2]

        centers = (box[:, :2] + box[:, 2:]) / 2
        valid = np.logical_and(crop[:2] <= centers,
                               centers < crop[2:]).all(axis=1)
        valid = np.logical_and(
            valid, (cropped_box[:, :2] < cropped_box[:, 2:]).all(axis=1))

        return cropped_box, np.where(valid)[0]

    def _crop_image(self, img, crop):
        x1, y1, x2, y2 = crop
        return img[y1:y2, x1:x2, :]

W
wangxinxin08 已提交
1423 1424 1425
    def _crop_segm(self, segm, crop):
        x1, y1, x2, y2 = crop
        return segm[:, y1:y2, x1:x2]
Q
qingqing01 已提交
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446


@register_op
class RandomScaledCrop(BaseOperator):
    """Resize image and bbox based on long side (with optional random scaling),
       then crop or pad image to target size.
    Args:
        target_dim (int): target size.
        scale_range (list): random scale range.
        interp (int): interpolation method, default to `cv2.INTER_LINEAR`.
    """

    def __init__(self,
                 target_dim=512,
                 scale_range=[.1, 2.],
                 interp=cv2.INTER_LINEAR):
        super(RandomScaledCrop, self).__init__()
        self.target_dim = target_dim
        self.scale_range = scale_range
        self.interp = interp

W
wangxinxin08 已提交
1447 1448 1449
    def apply(self, sample, context=None):
        img = sample['image']
        h, w = img.shape[:2]
Q
qingqing01 已提交
1450 1451 1452 1453 1454
        random_scale = np.random.uniform(*self.scale_range)
        dim = self.target_dim
        random_dim = int(dim * random_scale)
        dim_max = max(h, w)
        scale = random_dim / dim_max
W
wangxinxin08 已提交
1455 1456
        resize_w = w * scale
        resize_h = h * scale
Q
qingqing01 已提交
1457 1458
        offset_x = int(max(0, np.random.uniform(0., resize_w - dim)))
        offset_y = int(max(0, np.random.uniform(0., resize_h - dim)))
W
wangxinxin08 已提交
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

        img = cv2.resize(img, (resize_w, resize_h), interpolation=self.interp)
        img = np.array(img)
        canvas = np.zeros((dim, dim, 3), dtype=img.dtype)
        canvas[:min(dim, resize_h), :min(dim, resize_w), :] = img[
            offset_y:offset_y + dim, offset_x:offset_x + dim, :]
        sample['image'] = canvas
        sample['im_shape'] = np.asarray([resize_h, resize_w], dtype=np.float32)
        scale_factor = sample['sacle_factor']
        sample['scale_factor'] = np.asarray(
            [scale_factor[0] * scale, scale_factor[1] * scale],
            dtype=np.float32)

Q
qingqing01 已提交
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
        if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
            scale_array = np.array([scale, scale] * 2, dtype=np.float32)
            shift_array = np.array([offset_x, offset_y] * 2, dtype=np.float32)
            boxes = sample['gt_bbox'] * scale_array - shift_array
            boxes = np.clip(boxes, 0, dim - 1)
            # filter boxes with no area
            area = np.prod(boxes[..., 2:] - boxes[..., :2], axis=1)
            valid = (area > 1.).nonzero()[0]
            sample['gt_bbox'] = boxes[valid]
            sample['gt_class'] = sample['gt_class'][valid]

        return sample


@register_op
W
wangxinxin08 已提交
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
class Cutmix(BaseOperator):
    def __init__(self, alpha=1.5, beta=1.5):
        """ 
        CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features, see https://arxiv.org/abs/1905.04899
        Cutmix image and gt_bbbox/gt_score
        Args:
             alpha (float): alpha parameter of beta distribute
             beta (float): beta parameter of beta distribute
        """
        super(Cutmix, self).__init__()
        self.alpha = alpha
        self.beta = beta
        if self.alpha <= 0.0:
            raise ValueError("alpha shold be positive in {}".format(self))
        if self.beta <= 0.0:
            raise ValueError("beta shold be positive in {}".format(self))
Q
qingqing01 已提交
1503

W
wangxinxin08 已提交
1504 1505 1506 1507 1508
    def apply_image(self, img1, img2, factor):
        """ _rand_bbox """
        h = max(img1.shape[0], img2.shape[0])
        w = max(img1.shape[1], img2.shape[1])
        cut_rat = np.sqrt(1. - factor)
Q
qingqing01 已提交
1509

1510 1511
        cut_w = np.int32(w * cut_rat)
        cut_h = np.int32(h * cut_rat)
W
wangxinxin08 已提交
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521

        # uniform
        cx = np.random.randint(w)
        cy = np.random.randint(h)

        bbx1 = np.clip(cx - cut_w // 2, 0, w - 1)
        bby1 = np.clip(cy - cut_h // 2, 0, h - 1)
        bbx2 = np.clip(cx + cut_w // 2, 0, w - 1)
        bby2 = np.clip(cy + cut_h // 2, 0, h - 1)

W
wangguanzhong 已提交
1522 1523
        img_1_pad = np.zeros((h, w, img1.shape[2]), 'float32')
        img_1_pad[:img1.shape[0], :img1.shape[1], :] = \
W
wangxinxin08 已提交
1524
            img1.astype('float32')
W
wangguanzhong 已提交
1525 1526
        img_2_pad = np.zeros((h, w, img2.shape[2]), 'float32')
        img_2_pad[:img2.shape[0], :img2.shape[1], :] = \
W
wangxinxin08 已提交
1527
            img2.astype('float32')
W
wangguanzhong 已提交
1528 1529
        img_1_pad[bby1:bby2, bbx1:bbx2, :] = img_2_pad[bby1:bby2, bbx1:bbx2, :]
        return img_1_pad
W
wangxinxin08 已提交
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551

    def __call__(self, sample, context=None):
        if not isinstance(sample, Sequence):
            return sample

        assert len(sample) == 2, 'cutmix need two samples'

        factor = np.random.beta(self.alpha, self.beta)
        factor = max(0.0, min(1.0, factor))
        if factor >= 1.0:
            return sample[0]
        if factor <= 0.0:
            return sample[1]
        img1 = sample[0]['image']
        img2 = sample[1]['image']
        img = self.apply_image(img1, img2, factor)
        gt_bbox1 = sample[0]['gt_bbox']
        gt_bbox2 = sample[1]['gt_bbox']
        gt_bbox = np.concatenate((gt_bbox1, gt_bbox2), axis=0)
        gt_class1 = sample[0]['gt_class']
        gt_class2 = sample[1]['gt_class']
        gt_class = np.concatenate((gt_class1, gt_class2), axis=0)
W
wangguanzhong 已提交
1552 1553
        gt_score1 = np.ones_like(sample[0]['gt_class'])
        gt_score2 = np.ones_like(sample[1]['gt_class'])
W
wangxinxin08 已提交
1554 1555
        gt_score = np.concatenate(
            (gt_score1 * factor, gt_score2 * (1. - factor)), axis=0)
W
wangguanzhong 已提交
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
        result = copy.deepcopy(sample[0])
        result['image'] = img
        result['gt_bbox'] = gt_bbox
        result['gt_score'] = gt_score
        result['gt_class'] = gt_class
        if 'is_crowd' in sample[0]:
            is_crowd1 = sample[0]['is_crowd']
            is_crowd2 = sample[1]['is_crowd']
            is_crowd = np.concatenate((is_crowd1, is_crowd2), axis=0)
            result['is_crowd'] = is_crowd
        if 'difficult' in sample[0]:
            is_difficult1 = sample[0]['difficult']
            is_difficult2 = sample[1]['difficult']
            is_difficult = np.concatenate(
                (is_difficult1, is_difficult2), axis=0)
            result['difficult'] = is_difficult
        return result
Q
qingqing01 已提交
1573 1574 1575


@register_op
W
wangxinxin08 已提交
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
class Mixup(BaseOperator):
    def __init__(self, alpha=1.5, beta=1.5):
        """ Mixup image and gt_bbbox/gt_score
        Args:
            alpha (float): alpha parameter of beta distribute
            beta (float): beta parameter of beta distribute
        """
        super(Mixup, self).__init__()
        self.alpha = alpha
        self.beta = beta
        if self.alpha <= 0.0:
            raise ValueError("alpha shold be positive in {}".format(self))
        if self.beta <= 0.0:
            raise ValueError("beta shold be positive in {}".format(self))
Q
qingqing01 已提交
1590

W
wangxinxin08 已提交
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
    def apply_image(self, img1, img2, factor):
        h = max(img1.shape[0], img2.shape[0])
        w = max(img1.shape[1], img2.shape[1])
        img = np.zeros((h, w, img1.shape[2]), 'float32')
        img[:img1.shape[0], :img1.shape[1], :] = \
            img1.astype('float32') * factor
        img[:img2.shape[0], :img2.shape[1], :] += \
            img2.astype('float32') * (1.0 - factor)
        return img.astype('uint8')

    def __call__(self, sample, context=None):
        if not isinstance(sample, Sequence):
Q
qingqing01 已提交
1603 1604
            return sample

W
wangxinxin08 已提交
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
        assert len(sample) == 2, 'mixup need two samples'

        factor = np.random.beta(self.alpha, self.beta)
        factor = max(0.0, min(1.0, factor))
        if factor >= 1.0:
            return sample[0]
        if factor <= 0.0:
            return sample[1]
        im = self.apply_image(sample[0]['image'], sample[1]['image'], factor)
        result = copy.deepcopy(sample[0])
        result['image'] = im
        # apply bbox and score
        if 'gt_bbox' in sample[0]:
            gt_bbox1 = sample[0]['gt_bbox']
            gt_bbox2 = sample[1]['gt_bbox']
            gt_bbox = np.concatenate((gt_bbox1, gt_bbox2), axis=0)
            result['gt_bbox'] = gt_bbox
        if 'gt_class' in sample[0]:
            gt_class1 = sample[0]['gt_class']
            gt_class2 = sample[1]['gt_class']
            gt_class = np.concatenate((gt_class1, gt_class2), axis=0)
            result['gt_class'] = gt_class

            gt_score1 = np.ones_like(sample[0]['gt_class'])
            gt_score2 = np.ones_like(sample[1]['gt_class'])
            gt_score = np.concatenate(
                (gt_score1 * factor, gt_score2 * (1. - factor)), axis=0)
            result['gt_score'] = gt_score
        if 'is_crowd' in sample[0]:
            is_crowd1 = sample[0]['is_crowd']
            is_crowd2 = sample[1]['is_crowd']
            is_crowd = np.concatenate((is_crowd1, is_crowd2), axis=0)
            result['is_crowd'] = is_crowd
        if 'difficult' in sample[0]:
            is_difficult1 = sample[0]['difficult']
            is_difficult2 = sample[1]['difficult']
            is_difficult = np.concatenate(
                (is_difficult1, is_difficult2), axis=0)
            result['difficult'] = is_difficult

G
George Ni 已提交
1645 1646 1647 1648 1649
        if 'gt_ide' in sample[0]:
            gt_ide1 = sample[0]['gt_ide']
            gt_ide2 = sample[1]['gt_ide']
            gt_ide = np.concatenate((gt_ide1, gt_ide2), axis=0)
            result['gt_ide'] = gt_ide
W
wangxinxin08 已提交
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
        return result


@register_op
class NormalizeBox(BaseOperator):
    """Transform the bounding box's coornidates to [0,1]."""

    def __init__(self):
        super(NormalizeBox, self).__init__()

    def apply(self, sample, context):
        im = sample['image']
        gt_bbox = sample['gt_bbox']
        height, width, _ = im.shape
        for i in range(gt_bbox.shape[0]):
            gt_bbox[i][0] = gt_bbox[i][0] / width
            gt_bbox[i][1] = gt_bbox[i][1] / height
            gt_bbox[i][2] = gt_bbox[i][2] / width
            gt_bbox[i][3] = gt_bbox[i][3] / height
        sample['gt_bbox'] = gt_bbox

        if 'gt_keypoint' in sample.keys():
            gt_keypoint = sample['gt_keypoint']

            for i in range(gt_keypoint.shape[1]):
                if i % 2:
                    gt_keypoint[:, i] = gt_keypoint[:, i] / height
                else:
                    gt_keypoint[:, i] = gt_keypoint[:, i] / width
            sample['gt_keypoint'] = gt_keypoint

        return sample


@register_op
class BboxXYXY2XYWH(BaseOperator):
    """
    Convert bbox XYXY format to XYWH format.
    """

    def __init__(self):
        super(BboxXYXY2XYWH, self).__init__()

    def apply(self, sample, context=None):
        assert 'gt_bbox' in sample
        bbox = sample['gt_bbox']
        bbox[:, 2:4] = bbox[:, 2:4] - bbox[:, :2]
        bbox[:, :2] = bbox[:, :2] + bbox[:, 2:4] / 2.
        sample['gt_bbox'] = bbox
        return sample


@register_op
class PadBox(BaseOperator):
    def __init__(self, num_max_boxes=50):
        """
        Pad zeros to bboxes if number of bboxes is less than num_max_boxes.
        Args:
            num_max_boxes (int): the max number of bboxes
        """
        self.num_max_boxes = num_max_boxes
        super(PadBox, self).__init__()
Q
qingqing01 已提交
1712

W
wangxinxin08 已提交
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
    def apply(self, sample, context=None):
        assert 'gt_bbox' in sample
        bbox = sample['gt_bbox']
        gt_num = min(self.num_max_boxes, len(bbox))
        num_max = self.num_max_boxes
        # fields = context['fields'] if context else []
        pad_bbox = np.zeros((num_max, 4), dtype=np.float32)
        if gt_num > 0:
            pad_bbox[:gt_num, :] = bbox[:gt_num, :]
        sample['gt_bbox'] = pad_bbox
        if 'gt_class' in sample:
            pad_class = np.zeros((num_max, ), dtype=np.int32)
            if gt_num > 0:
                pad_class[:gt_num] = sample['gt_class'][:gt_num, 0]
            sample['gt_class'] = pad_class
        if 'gt_score' in sample:
            pad_score = np.zeros((num_max, ), dtype=np.float32)
            if gt_num > 0:
                pad_score[:gt_num] = sample['gt_score'][:gt_num, 0]
            sample['gt_score'] = pad_score
        # in training, for example in op ExpandImage,
        # the bbox and gt_class is expandded, but the difficult is not,
        # so, judging by it's length
        if 'difficult' in sample:
            pad_diff = np.zeros((num_max, ), dtype=np.int32)
            if gt_num > 0:
                pad_diff[:gt_num] = sample['difficult'][:gt_num, 0]
            sample['difficult'] = pad_diff
        if 'is_crowd' in sample:
            pad_crowd = np.zeros((num_max, ), dtype=np.int32)
            if gt_num > 0:
                pad_crowd[:gt_num] = sample['is_crowd'][:gt_num, 0]
            sample['is_crowd'] = pad_crowd
G
George Ni 已提交
1746 1747 1748 1749 1750
        if 'gt_ide' in sample:
            pad_ide = np.zeros((num_max, ), dtype=np.int32)
            if gt_num > 0:
                pad_ide[:gt_num] = sample['gt_ide'][:gt_num, 0]
            sample['gt_ide'] = pad_ide
Q
qingqing01 已提交
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
        return sample


@register_op
class DebugVisibleImage(BaseOperator):
    """
    In debug mode, visualize images according to `gt_box`.
    (Currently only supported when not cropping and flipping image.)
    """

    def __init__(self, output_dir='output/debug', is_normalized=False):
        super(DebugVisibleImage, self).__init__()
        self.is_normalized = is_normalized
        self.output_dir = output_dir
        if not os.path.isdir(output_dir):
            os.makedirs(output_dir)
        if not isinstance(self.is_normalized, bool):
            raise TypeError("{}: input type is invalid.".format(self))

W
wangxinxin08 已提交
1770
    def apply(self, sample, context=None):
1771 1772
        image = Image.fromarray(sample['image'].astype(np.uint8))
        out_file_name = '{:012d}.jpg'.format(sample['im_id'][0])
Q
qingqing01 已提交
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
        width = sample['w']
        height = sample['h']
        gt_bbox = sample['gt_bbox']
        gt_class = sample['gt_class']
        draw = ImageDraw.Draw(image)
        for i in range(gt_bbox.shape[0]):
            if self.is_normalized:
                gt_bbox[i][0] = gt_bbox[i][0] * width
                gt_bbox[i][1] = gt_bbox[i][1] * height
                gt_bbox[i][2] = gt_bbox[i][2] * width
                gt_bbox[i][3] = gt_bbox[i][3] * height

            xmin, ymin, xmax, ymax = gt_bbox[i]
            draw.line(
                [(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin),
                 (xmin, ymin)],
                width=2,
                fill='green')
            # draw label
            text = str(gt_class[i][0])
            tw, th = draw.textsize(text)
            draw.rectangle(
                [(xmin + 1, ymin - th), (xmin + tw + 1, ymin)], fill='green')
            draw.text((xmin + 1, ymin - th), text, fill=(255, 255, 255))

        if 'gt_keypoint' in sample.keys():
            gt_keypoint = sample['gt_keypoint']
            if self.is_normalized:
                for i in range(gt_keypoint.shape[1]):
                    if i % 2:
                        gt_keypoint[:, i] = gt_keypoint[:, i] * height
                    else:
                        gt_keypoint[:, i] = gt_keypoint[:, i] * width
            for i in range(gt_keypoint.shape[0]):
                keypoint = gt_keypoint[i]
                for j in range(int(keypoint.shape[0] / 2)):
                    x1 = round(keypoint[2 * j]).astype(np.int32)
                    y1 = round(keypoint[2 * j + 1]).astype(np.int32)
                    draw.ellipse(
W
wangxinxin08 已提交
1812
                        (x1, y1, x1 + 5, y1 + 5), fill='green', outline='green')
Q
qingqing01 已提交
1813 1814 1815
        save_path = os.path.join(self.output_dir, out_file_name)
        image.save(save_path, quality=95)
        return sample
W
wangxinxin08 已提交
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826


@register_op
class Pad(BaseOperator):
    def __init__(self,
                 size=None,
                 size_divisor=32,
                 pad_mode=0,
                 offsets=None,
                 fill_value=(127.5, 127.5, 127.5)):
        """
1827
        Pad image to a specified size or multiple of size_divisor.
W
wangxinxin08 已提交
1828 1829 1830 1831 1832
        Args:
            size (int, Sequence): image target size, if None, pad to multiple of size_divisor, default None
            size_divisor (int): size divisor, default 32
            pad_mode (int): pad mode, currently only supports four modes [-1, 0, 1, 2]. if -1, use specified offsets
                if 0, only pad to right and bottom. if 1, pad according to center. if 2, only pad left and top
1833
            offsets (list): [offset_x, offset_y], specify offset while padding, only supported pad_mode=-1
W
wangxinxin08 已提交
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
            fill_value (bool): rgb value of pad area, default (127.5, 127.5, 127.5)
        """
        super(Pad, self).__init__()

        if not isinstance(size, (int, Sequence)):
            raise TypeError(
                "Type of target_size is invalid when random_size is True. \
                            Must be List, now is {}".format(type(size)))

        if isinstance(size, int):
            size = [size, size]

        assert pad_mode in [
            -1, 0, 1, 2
        ], 'currently only supports four modes [-1, 0, 1, 2]'
W
will-jl944 已提交
1849 1850
        if pad_mode == -1:
            assert offsets, 'if pad_mode is -1, offsets should not be None'
W
wangxinxin08 已提交
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916

        self.size = size
        self.size_divisor = size_divisor
        self.pad_mode = pad_mode
        self.fill_value = fill_value
        self.offsets = offsets

    def apply_segm(self, segms, offsets, im_size, size):
        def _expand_poly(poly, x, y):
            expanded_poly = np.array(poly)
            expanded_poly[0::2] += x
            expanded_poly[1::2] += y
            return expanded_poly.tolist()

        def _expand_rle(rle, x, y, height, width, h, w):
            if 'counts' in rle and type(rle['counts']) == list:
                rle = mask_util.frPyObjects(rle, height, width)
            mask = mask_util.decode(rle)
            expanded_mask = np.full((h, w), 0).astype(mask.dtype)
            expanded_mask[y:y + height, x:x + width] = mask
            rle = mask_util.encode(
                np.array(
                    expanded_mask, order='F', dtype=np.uint8))
            return rle

        x, y = offsets
        height, width = im_size
        h, w = size
        expanded_segms = []
        for segm in segms:
            if is_poly(segm):
                # Polygon format
                expanded_segms.append(
                    [_expand_poly(poly, x, y) for poly in segm])
            else:
                # RLE format
                import pycocotools.mask as mask_util
                expanded_segms.append(
                    _expand_rle(segm, x, y, height, width, h, w))
        return expanded_segms

    def apply_bbox(self, bbox, offsets):
        return bbox + np.array(offsets * 2, dtype=np.float32)

    def apply_keypoint(self, keypoints, offsets):
        n = len(keypoints[0]) // 2
        return keypoints + np.array(offsets * n, dtype=np.float32)

    def apply_image(self, image, offsets, im_size, size):
        x, y = offsets
        im_h, im_w = im_size
        h, w = size
        canvas = np.ones((h, w, 3), dtype=np.float32)
        canvas *= np.array(self.fill_value, dtype=np.float32)
        canvas[y:y + im_h, x:x + im_w, :] = image.astype(np.float32)
        return canvas

    def apply(self, sample, context=None):
        im = sample['image']
        im_h, im_w = im.shape[:2]
        if self.size:
            h, w = self.size
            assert (
                im_h < h and im_w < w
            ), '(h, w) of target size should be greater than (im_h, im_w)'
        else:
W
will-jl944 已提交
1917
            h = np.ceil(im_h / self.size_divisor) * self.size_divisor
W
wangxinxin08 已提交
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
            w = np.ceil(im_w / self.size_divisor) * self.size_divisor

        if h == im_h and w == im_w:
            return sample

        if self.pad_mode == -1:
            offset_x, offset_y = self.offsets
        elif self.pad_mode == 0:
            offset_y, offset_x = 0, 0
        elif self.pad_mode == 1:
            offset_y, offset_x = (h - im_h) // 2, (w - im_w) // 2
        else:
            offset_y, offset_x = h - im_h, w - im_w

        offsets, im_size, size = [offset_x, offset_y], [im_h, im_w], [h, w]

        sample['image'] = self.apply_image(im, offsets, im_size, size)

        if self.pad_mode == 0:
            return sample
        if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
            sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], offsets)

        if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
            sample['gt_poly'] = self.apply_segm(sample['gt_poly'], offsets,
                                                im_size, size)

        if 'gt_keypoint' in sample and len(sample['gt_keypoint']) > 0:
            sample['gt_keypoint'] = self.apply_keypoint(sample['gt_keypoint'],
                                                        offsets)

        return sample


@register_op
class Poly2Mask(BaseOperator):
    """
    gt poly to mask annotations
    """

    def __init__(self):
        super(Poly2Mask, self).__init__()
        import pycocotools.mask as maskUtils
        self.maskutils = maskUtils

    def _poly2mask(self, mask_ann, img_h, img_w):
        if isinstance(mask_ann, list):
            # polygon -- a single object might consist of multiple parts
            # we merge all parts into one mask rle code
            rles = self.maskutils.frPyObjects(mask_ann, img_h, img_w)
            rle = self.maskutils.merge(rles)
        elif isinstance(mask_ann['counts'], list):
            # uncompressed RLE
            rle = self.maskutils.frPyObjects(mask_ann, img_h, img_w)
        else:
            # rle
            rle = mask_ann
        mask = self.maskutils.decode(rle)
        return mask

    def apply(self, sample, context=None):
        assert 'gt_poly' in sample
        im_h = sample['h']
        im_w = sample['w']
        masks = [
            self._poly2mask(gt_poly, im_h, im_w)
            for gt_poly in sample['gt_poly']
        ]
        sample['gt_segm'] = np.asarray(masks).astype(np.uint8)
        return sample
C
cnn 已提交
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001


@register_op
class Rbox2Poly(BaseOperator):
    """
    Convert rbbox format to poly format.
    """

    def __init__(self):
        super(Rbox2Poly, self).__init__()

    def apply(self, sample, context=None):
        assert 'gt_rbox' in sample
        assert sample['gt_rbox'].shape[1] == 5
C
cnn 已提交
2002 2003 2004 2005 2006
        rrects = sample['gt_rbox']
        x_ctr = rrects[:, 0]
        y_ctr = rrects[:, 1]
        width = rrects[:, 2]
        height = rrects[:, 3]
C
cnn 已提交
2007 2008 2009 2010 2011
        x1 = x_ctr - width / 2.0
        y1 = y_ctr - height / 2.0
        x2 = x_ctr + width / 2.0
        y2 = y_ctr + height / 2.0
        sample['gt_bbox'] = np.stack([x1, y1, x2, y2], axis=1)
C
cnn 已提交
2012
        polys = bbox_utils.rbox2poly_np(rrects)
C
cnn 已提交
2013
        sample['gt_rbox2poly'] = polys
C
cnn 已提交
2014
        return sample
G
George Ni 已提交
2015 2016 2017 2018


@register_op
class AugmentHSV(BaseOperator):
2019
    def __init__(self, fraction=0.50, is_bgr=True):
G
George Ni 已提交
2020 2021 2022
        """ 
        Augment the SV channel of image data.
        Args:
2023 2024
            fraction (float): the fraction for augment. Default: 0.5.
            is_bgr (bool): whether the image is BGR mode. Default: True.
G
George Ni 已提交
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
        """
        super(AugmentHSV, self).__init__()
        self.fraction = fraction
        self.is_bgr = is_bgr

    def apply(self, sample, context=None):
        img = sample['image']
        if self.is_bgr:
            img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
        else:
            img_hsv = cv2.cvtColor(img, cv2.COLOR_RGB2HSV)
        S = img_hsv[:, :, 1].astype(np.float32)
        V = img_hsv[:, :, 2].astype(np.float32)

        a = (random.random() * 2 - 1) * self.fraction + 1
        S *= a
        if a > 1:
            np.clip(S, a_min=0, a_max=255, out=S)

        a = (random.random() * 2 - 1) * self.fraction + 1
        V *= a
        if a > 1:
            np.clip(V, a_min=0, a_max=255, out=V)

        img_hsv[:, :, 1] = S.astype(np.uint8)
        img_hsv[:, :, 2] = V.astype(np.uint8)
        if self.is_bgr:
            cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img)
        else:
            cv2.cvtColor(img_hsv, cv2.COLOR_HSV2RGB, dst=img)

        sample['image'] = img
        return sample


@register_op
class Norm2PixelBbox(BaseOperator):
    """
    Transform the bounding box's coornidates which is in [0,1] to pixels.
    """

    def __init__(self):
        super(Norm2PixelBbox, self).__init__()

    def apply(self, sample, context=None):
        assert 'gt_bbox' in sample
        bbox = sample['gt_bbox']
        height, width = sample['image'].shape[:2]
        bbox[:, 0::2] = bbox[:, 0::2] * width
        bbox[:, 1::2] = bbox[:, 1::2] * height
        sample['gt_bbox'] = bbox
        return sample


@register_op
class BboxCXCYWH2XYXY(BaseOperator):
    """
    Convert bbox CXCYWH format to XYXY format.
    [center_x, center_y, width, height] -> [x0, y0, x1, y1]
    """

    def __init__(self):
        super(BboxCXCYWH2XYXY, self).__init__()

    def apply(self, sample, context=None):
        assert 'gt_bbox' in sample
        bbox0 = sample['gt_bbox']
        bbox = bbox0.copy()

        bbox[:, :2] = bbox0[:, :2] - bbox0[:, 2:4] / 2.
        bbox[:, 2:4] = bbox0[:, :2] + bbox0[:, 2:4] / 2.
        sample['gt_bbox'] = bbox
        return sample
W
Wenyu 已提交
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351


@register_op
class RandomResizeCrop(BaseOperator):
    """Random resize and crop image and bboxes.
    Args:
        resizes (list): resize image to one of resizes. if keep_ratio is True and mode is
        'long', resize the image's long side to the maximum of target_size, if keep_ratio is
        True and mode is 'short', resize the image's short side to the minimum of target_size.
        cropsizes (list): crop sizes after resize, [(min_crop_1, max_crop_1), ...]
        mode (str): resize mode, `long` or `short`. Details see resizes. 
        prob (float): probability of this op.
        keep_ratio (bool): whether keep_ratio or not, default true
        interp (int): the interpolation method
        thresholds (list): iou thresholds for decide a valid bbox crop.
        num_attempts (int): number of tries before giving up.
        allow_no_crop (bool): allow return without actually cropping them.
        cover_all_box (bool): ensure all bboxes are covered in the final crop.
        is_mask_crop(bool): whether crop the segmentation.
    """

    def __init__(
            self,
            resizes,
            cropsizes,
            prob=0.5,
            mode='short',
            keep_ratio=True,
            interp=cv2.INTER_LINEAR,
            num_attempts=3,
            cover_all_box=False,
            allow_no_crop=False,
            thresholds=[0.3, 0.5, 0.7],
            is_mask_crop=False, ):
        super(RandomResizeCrop, self).__init__()

        self.resizes = resizes
        self.cropsizes = cropsizes
        self.prob = prob
        self.mode = mode

        self.resizer = Resize(0, keep_ratio=keep_ratio, interp=interp)
        self.croper = RandomCrop(
            num_attempts=num_attempts,
            cover_all_box=cover_all_box,
            thresholds=thresholds,
            allow_no_crop=allow_no_crop,
            is_mask_crop=is_mask_crop)

    def _format_size(self, size):
        if isinstance(size, Integral):
            size = (size, size)
        return size

    def apply(self, sample, context=None):
        if random.random() < self.prob:
            _resize = self._format_size(random.choice(self.resizes))
            _cropsize = self._format_size(random.choice(self.cropsizes))
            sample = self._resize(
                self.resizer,
                sample,
                size=_resize,
                mode=self.mode,
                context=context)
            sample = self._random_crop(
                self.croper, sample, size=_cropsize, context=context)
        return sample

    @staticmethod
    def _random_crop(croper, sample, size, context=None):
        if 'gt_bbox' in sample and len(sample['gt_bbox']) == 0:
            return sample

        self = croper
        h, w = sample['image'].shape[:2]
        gt_bbox = sample['gt_bbox']
        cropsize = size
        min_crop = min(cropsize)
        max_crop = max(cropsize)

        thresholds = list(self.thresholds)
        np.random.shuffle(thresholds)

        for thresh in thresholds:
            found = False
            for _ in range(self.num_attempts):

                crop_h = random.randint(min_crop, min(h, max_crop))
                crop_w = random.randint(min_crop, min(w, max_crop))

                crop_y = random.randint(0, h - crop_h)
                crop_x = random.randint(0, w - crop_w)

                crop_box = [crop_x, crop_y, crop_x + crop_w, crop_y + crop_h]
                iou = self._iou_matrix(
                    gt_bbox, np.array(
                        [crop_box], dtype=np.float32))
                if iou.max() < thresh:
                    continue

                if self.cover_all_box and iou.min() < thresh:
                    continue

                cropped_box, valid_ids = self._crop_box_with_center_constraint(
                    gt_bbox, np.array(
                        crop_box, dtype=np.float32))
                if valid_ids.size > 0:
                    found = True
                    break

            if found:
                if self.is_mask_crop and 'gt_poly' in sample and len(sample[
                        'gt_poly']) > 0:
                    crop_polys = self.crop_segms(
                        sample['gt_poly'],
                        valid_ids,
                        np.array(
                            crop_box, dtype=np.int64),
                        h,
                        w)
                    if [] in crop_polys:
                        delete_id = list()
                        valid_polys = list()
                        for id, crop_poly in enumerate(crop_polys):
                            if crop_poly == []:
                                delete_id.append(id)
                            else:
                                valid_polys.append(crop_poly)
                        valid_ids = np.delete(valid_ids, delete_id)
                        if len(valid_polys) == 0:
                            return sample
                        sample['gt_poly'] = valid_polys
                    else:
                        sample['gt_poly'] = crop_polys

                if 'gt_segm' in sample:
                    sample['gt_segm'] = self._crop_segm(sample['gt_segm'],
                                                        crop_box)
                    sample['gt_segm'] = np.take(
                        sample['gt_segm'], valid_ids, axis=0)

                sample['image'] = self._crop_image(sample['image'], crop_box)
                sample['gt_bbox'] = np.take(cropped_box, valid_ids, axis=0)
                sample['gt_class'] = np.take(
                    sample['gt_class'], valid_ids, axis=0)
                if 'gt_score' in sample:
                    sample['gt_score'] = np.take(
                        sample['gt_score'], valid_ids, axis=0)

                if 'is_crowd' in sample:
                    sample['is_crowd'] = np.take(
                        sample['is_crowd'], valid_ids, axis=0)
                return sample

        return sample

    @staticmethod
    def _resize(resizer, sample, size, mode='short', context=None):
        self = resizer
        im = sample['image']
        target_size = size

        if not isinstance(im, np.ndarray):
            raise TypeError("{}: image type is not numpy.".format(self))
        if len(im.shape) != 3:
            raise ImageError('{}: image is not 3-dimensional.'.format(self))

        # apply image
        im_shape = im.shape
        if self.keep_ratio:

            im_size_min = np.min(im_shape[0:2])
            im_size_max = np.max(im_shape[0:2])

            target_size_min = np.min(target_size)
            target_size_max = np.max(target_size)

            if mode == 'long':
                im_scale = min(target_size_min / im_size_min,
                               target_size_max / im_size_max)
            else:
                im_scale = max(target_size_min / im_size_min,
                               target_size_max / im_size_max)

            resize_h = im_scale * float(im_shape[0])
            resize_w = im_scale * float(im_shape[1])

            im_scale_x = im_scale
            im_scale_y = im_scale
        else:
            resize_h, resize_w = target_size
            im_scale_y = resize_h / im_shape[0]
            im_scale_x = resize_w / im_shape[1]

        im = self.apply_image(sample['image'], [im_scale_x, im_scale_y])
        sample['image'] = im
        sample['im_shape'] = np.asarray([resize_h, resize_w], dtype=np.float32)
        if 'scale_factor' in sample:
            scale_factor = sample['scale_factor']
            sample['scale_factor'] = np.asarray(
                [scale_factor[0] * im_scale_y, scale_factor[1] * im_scale_x],
                dtype=np.float32)
        else:
            sample['scale_factor'] = np.asarray(
                [im_scale_y, im_scale_x], dtype=np.float32)

        # apply bbox
        if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
            sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'],
                                                [im_scale_x, im_scale_y],
                                                [resize_w, resize_h])

        # apply rbox
        if 'gt_rbox2poly' in sample:
            if np.array(sample['gt_rbox2poly']).shape[1] != 8:
                logger.warn(
                    "gt_rbox2poly's length shoule be 8, but actually is {}".
                    format(len(sample['gt_rbox2poly'])))
            sample['gt_rbox2poly'] = self.apply_bbox(sample['gt_rbox2poly'],
                                                     [im_scale_x, im_scale_y],
                                                     [resize_w, resize_h])

        # apply polygon
        if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
            sample['gt_poly'] = self.apply_segm(sample['gt_poly'], im_shape[:2],
                                                [im_scale_x, im_scale_y])

        # apply semantic
        if 'semantic' in sample and sample['semantic']:
            semantic = sample['semantic']
            semantic = cv2.resize(
                semantic.astype('float32'),
                None,
                None,
                fx=im_scale_x,
                fy=im_scale_y,
                interpolation=self.interp)
            semantic = np.asarray(semantic).astype('int32')
            semantic = np.expand_dims(semantic, 0)
            sample['semantic'] = semantic

        # apply gt_segm
        if 'gt_segm' in sample and len(sample['gt_segm']) > 0:
            masks = [
                cv2.resize(
                    gt_segm,
                    None,
                    None,
                    fx=im_scale_x,
                    fy=im_scale_y,
                    interpolation=cv2.INTER_NEAREST)
                for gt_segm in sample['gt_segm']
            ]
            sample['gt_segm'] = np.asarray(masks).astype(np.uint8)
2352

2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
        return sample


class RandomPerspective(BaseOperator):
    """
    Rotate, tranlate, scale, shear and perspect image and bboxes randomly,
    refer to https://github.com/ultralytics/yolov5/blob/develop/utils/datasets.py

    Args:
        degree (int): rotation degree, uniformly sampled in [-degree, degree]
        translate (float): translate fraction, translate_x and translate_y are uniformly sampled
            in [0.5 - translate, 0.5 + translate]
        scale (float): scale factor, uniformly sampled in [1 - scale, 1 + scale]
        shear (int): shear degree, shear_x and shear_y are uniformly sampled in [-shear, shear]
        perspective (float): perspective_x and perspective_y are uniformly sampled in [-perspective, perspective]
        area_thr (float): the area threshold of bbox to be kept after transformation, default 0.25
        fill_value (tuple): value used in case of a constant border, default (114, 114, 114)
    """

    def __init__(self,
                 degree=10,
                 translate=0.1,
                 scale=0.1,
                 shear=10,
                 perspective=0.0,
                 border=[0, 0],
                 area_thr=0.25,
                 fill_value=(114, 114, 114)):
        super(RandomPerspective, self).__init__()
        self.degree = degree
        self.translate = translate
        self.scale = scale
        self.shear = shear
        self.perspective = perspective
        self.border = border
        self.area_thr = area_thr
        self.fill_value = fill_value

    def apply(self, sample, context=None):
        im = sample['image']
        height = im.shape[0] + self.border[0] * 2
        width = im.shape[1] + self.border[1] * 2

        # center
        C = np.eye(3)
        C[0, 2] = -im.shape[1] / 2
        C[1, 2] = -im.shape[0] / 2

        # perspective
        P = np.eye(3)
        P[2, 0] = random.uniform(-self.perspective, self.perspective)
        P[2, 1] = random.uniform(-self.perspective, self.perspective)

        # Rotation and scale
        R = np.eye(3)
        a = random.uniform(-self.degree, self.degree)
        s = random.uniform(1 - self.scale, 1 + self.scale)
        R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)

        # Shear
        S = np.eye(3)
        # shear x (deg)
        S[0, 1] = math.tan(
            random.uniform(-self.shear, self.shear) * math.pi / 180)
        # shear y (deg)
        S[1, 0] = math.tan(
            random.uniform(-self.shear, self.shear) * math.pi / 180)

        # Translation
        T = np.eye(3)
        T[0, 2] = random.uniform(0.5 - self.translate,
                                 0.5 + self.translate) * width
        T[1, 2] = random.uniform(0.5 - self.translate,
                                 0.5 + self.translate) * height

        # matmul
        # M = T @ S @ R @ P @ C
        M = np.eye(3)
        for cM in [T, S, R, P, C]:
            M = np.matmul(M, cM)

        if (self.border[0] != 0) or (self.border[1] != 0) or (
                M != np.eye(3)).any():
            if self.perspective:
                im = cv2.warpPerspective(
                    im, M, dsize=(width, height), borderValue=self.fill_value)
            else:
                im = cv2.warpAffine(
                    im,
                    M[:2],
                    dsize=(width, height),
                    borderValue=self.fill_value)

        sample['image'] = im
        if sample['gt_bbox'].shape[0] > 0:
            sample = transform_bbox(
                sample,
                M,
                width,
                height,
                area_thr=self.area_thr,
                perspective=self.perspective)

        return sample


@register_op
class Mosaic(BaseOperator):
    """
    Mosaic Data Augmentation, refer to https://github.com/ultralytics/yolov5/blob/develop/utils/datasets.py

    """

    def __init__(self,
                 target_size,
                 mosaic_border=None,
                 fill_value=(114, 114, 114)):
        super(Mosaic, self).__init__()
        self.target_size = target_size
        if mosaic_border is None:
            mosaic_border = (-target_size // 2, -target_size // 2)
        self.mosaic_border = mosaic_border
        self.fill_value = fill_value

    def __call__(self, sample, context=None):
        if not isinstance(sample, Sequence):
            return sample

        s = self.target_size
        yc, xc = [
            int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border
        ]
        boxes = [x['gt_bbox'] for x in sample]
        labels = [x['gt_class'] for x in sample]
        for i in range(len(sample)):
            im = sample[i]['image']
            h, w, c = im.shape

            if i == 0:  # top left
                image = np.ones(
                    (s * 2, s * 2, c), dtype=np.uint8) * self.fill_value
                # xmin, ymin, xmax, ymax (dst image)
                x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc
                # xmin, ymin, xmax, ymax (src image)
                x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h
            elif i == 1:  # top right
                x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
                x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
            elif i == 2:  # bottom left
                x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
                x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, max(xc, w), min(
                    y2a - y1a, h)
            elif i == 3:  # bottom right
                x1a, y1a, x2a, y2a = xc, yc, min(xc + w,
                                                 s * 2), min(s * 2, yc + h)
                x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)

            image[y1a:y2a, x1a:x2a] = im[y1b:y2b, x1b:x2b]
            padw = x1a - x1b
            padh = y1a - y1b
            boxes[i] = boxes[i] + (padw, padh, padw, padh)

        boxes = np.concatenate(boxes, axis=0)
        boxes = np.clip(boxes, 0, s * 2)
        labels = np.concatenate(labels, axis=0)
        if 'is_crowd' in sample[0]:
            is_crowd = np.concatenate([x['is_crowd'] for x in sample], axis=0)
        if 'difficult' in sample[0]:
            difficult = np.concatenate([x['difficult'] for x in sample], axis=0)
        sample = sample[0]
        sample['image'] = image.astype(np.uint8)
        sample['gt_bbox'] = boxes
        sample['gt_class'] = labels
        if 'is_crowd' in sample:
            sample['is_crowd'] = is_crowd
        if 'difficult' in sample:
            sample['difficult'] = difficult
W
Wenyu 已提交
2530 2531

        return sample
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882


@register_op
class RandomSelect(BaseOperator):
    """
    Randomly choose a transformation between transforms1 and transforms2,
    and the probability of choosing transforms1 is p.
    """

    def __init__(self, transforms1, transforms2, p=0.5):
        super(RandomSelect, self).__init__()
        self.transforms1 = Compose(transforms1)
        self.transforms2 = Compose(transforms2)
        self.p = p

    def apply(self, sample, context=None):
        if random.random() < self.p:
            return self.transforms1(sample)
        return self.transforms2(sample)


@register_op
class RandomShortSideResize(BaseOperator):
    def __init__(self,
                 short_side_sizes,
                 max_size=None,
                 interp=cv2.INTER_LINEAR,
                 random_interp=False):
        """
        Resize the image randomly according to the short side. If max_size is not None,
        the long side is scaled according to max_size. The whole process will be keep ratio.
        Args:
            short_side_sizes (list|tuple): Image target short side size.
            max_size (int): The size of the longest side of image after resize.
            interp (int): The interpolation method.
            random_interp (bool): Whether random select interpolation method.
        """
        super(RandomShortSideResize, self).__init__()

        assert isinstance(short_side_sizes,
                          Sequence), "short_side_sizes must be List or Tuple"

        self.short_side_sizes = short_side_sizes
        self.max_size = max_size
        self.interp = interp
        self.random_interp = random_interp
        self.interps = [
            cv2.INTER_NEAREST,
            cv2.INTER_LINEAR,
            cv2.INTER_AREA,
            cv2.INTER_CUBIC,
            cv2.INTER_LANCZOS4,
        ]

    def get_size_with_aspect_ratio(self, image_shape, size, max_size=None):
        h, w = image_shape
        if max_size is not None:
            min_original_size = float(min((w, h)))
            max_original_size = float(max((w, h)))
            if max_original_size / min_original_size * size > max_size:
                size = int(
                    round(max_size * min_original_size / max_original_size))

        if (w <= h and w == size) or (h <= w and h == size):
            return (w, h)

        if w < h:
            ow = size
            oh = int(size * h / w)
        else:
            oh = size
            ow = int(size * w / h)

        return (ow, oh)

    def resize(self,
               sample,
               target_size,
               max_size=None,
               interp=cv2.INTER_LINEAR):
        im = sample['image']
        if not isinstance(im, np.ndarray):
            raise TypeError("{}: image type is not numpy.".format(self))
        if len(im.shape) != 3:
            raise ImageError('{}: image is not 3-dimensional.'.format(self))

        target_size = self.get_size_with_aspect_ratio(im.shape[:2], target_size,
                                                      max_size)
        im_scale_y, im_scale_x = target_size[1] / im.shape[0], target_size[
            0] / im.shape[1]

        sample['image'] = cv2.resize(im, target_size, interpolation=interp)
        sample['im_shape'] = np.asarray(target_size[::-1], dtype=np.float32)
        if 'scale_factor' in sample:
            scale_factor = sample['scale_factor']
            sample['scale_factor'] = np.asarray(
                [scale_factor[0] * im_scale_y, scale_factor[1] * im_scale_x],
                dtype=np.float32)
        else:
            sample['scale_factor'] = np.asarray(
                [im_scale_y, im_scale_x], dtype=np.float32)

        # apply bbox
        if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
            sample['gt_bbox'] = self.apply_bbox(
                sample['gt_bbox'], [im_scale_x, im_scale_y], target_size)
        # apply polygon
        if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
            sample['gt_poly'] = self.apply_segm(sample['gt_poly'], im.shape[:2],
                                                [im_scale_x, im_scale_y])
        # apply semantic
        if 'semantic' in sample and sample['semantic']:
            semantic = sample['semantic']
            semantic = cv2.resize(
                semantic.astype('float32'),
                target_size,
                interpolation=self.interp)
            semantic = np.asarray(semantic).astype('int32')
            semantic = np.expand_dims(semantic, 0)
            sample['semantic'] = semantic
        # apply gt_segm
        if 'gt_segm' in sample and len(sample['gt_segm']) > 0:
            masks = [
                cv2.resize(
                    gt_segm, target_size, interpolation=cv2.INTER_NEAREST)
                for gt_segm in sample['gt_segm']
            ]
            sample['gt_segm'] = np.asarray(masks).astype(np.uint8)
        return sample

    def apply_bbox(self, bbox, scale, size):
        im_scale_x, im_scale_y = scale
        resize_w, resize_h = size
        bbox[:, 0::2] *= im_scale_x
        bbox[:, 1::2] *= im_scale_y
        bbox[:, 0::2] = np.clip(bbox[:, 0::2], 0, resize_w)
        bbox[:, 1::2] = np.clip(bbox[:, 1::2], 0, resize_h)
        return bbox.astype('float32')

    def apply_segm(self, segms, im_size, scale):
        def _resize_poly(poly, im_scale_x, im_scale_y):
            resized_poly = np.array(poly).astype('float32')
            resized_poly[0::2] *= im_scale_x
            resized_poly[1::2] *= im_scale_y
            return resized_poly.tolist()

        def _resize_rle(rle, im_h, im_w, im_scale_x, im_scale_y):
            if 'counts' in rle and type(rle['counts']) == list:
                rle = mask_util.frPyObjects(rle, im_h, im_w)

            mask = mask_util.decode(rle)
            mask = cv2.resize(
                mask,
                None,
                None,
                fx=im_scale_x,
                fy=im_scale_y,
                interpolation=self.interp)
            rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8))
            return rle

        im_h, im_w = im_size
        im_scale_x, im_scale_y = scale
        resized_segms = []
        for segm in segms:
            if is_poly(segm):
                # Polygon format
                resized_segms.append([
                    _resize_poly(poly, im_scale_x, im_scale_y) for poly in segm
                ])
            else:
                # RLE format
                import pycocotools.mask as mask_util
                resized_segms.append(
                    _resize_rle(segm, im_h, im_w, im_scale_x, im_scale_y))

        return resized_segms

    def apply(self, sample, context=None):
        target_size = random.choice(self.short_side_sizes)
        interp = random.choice(
            self.interps) if self.random_interp else self.interp

        return self.resize(sample, target_size, self.max_size, interp)


@register_op
class RandomSizeCrop(BaseOperator):
    """
    Cut the image randomly according to `min_size` and `max_size`
    """

    def __init__(self, min_size, max_size):
        super(RandomSizeCrop, self).__init__()
        self.min_size = min_size
        self.max_size = max_size

        from paddle.vision.transforms.functional import crop as paddle_crop
        self.paddle_crop = paddle_crop

    @staticmethod
    def get_crop_params(img_shape, output_size):
        """Get parameters for ``crop`` for a random crop.
        Args:
            img_shape (list|tuple): Image's height and width.
            output_size (list|tuple): Expected output size of the crop.
        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
        """
        h, w = img_shape
        th, tw = output_size

        if h + 1 < th or w + 1 < tw:
            raise ValueError(
                "Required crop size {} is larger then input image size {}".
                format((th, tw), (h, w)))

        if w == tw and h == th:
            return 0, 0, h, w

        i = random.randint(0, h - th + 1)
        j = random.randint(0, w - tw + 1)
        return i, j, th, tw

    def crop(self, sample, region):
        image_shape = sample['image'].shape[:2]
        sample['image'] = self.paddle_crop(sample['image'], *region)

        keep_index = None
        # apply bbox
        if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
            sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], region)
            bbox = sample['gt_bbox'].reshape([-1, 2, 2])
            area = (bbox[:, 1, :] - bbox[:, 0, :]).prod(axis=1)
            keep_index = np.where(area > 0)[0]
            sample['gt_bbox'] = sample['gt_bbox'][keep_index] if len(
                keep_index) > 0 else np.zeros(
                    [0, 4], dtype=np.float32)
            sample['gt_class'] = sample['gt_class'][keep_index] if len(
                keep_index) > 0 else np.zeros(
                    [0, 1], dtype=np.float32)
            if 'gt_score' in sample:
                sample['gt_score'] = sample['gt_score'][keep_index] if len(
                    keep_index) > 0 else np.zeros(
                        [0, 1], dtype=np.float32)
            if 'is_crowd' in sample:
                sample['is_crowd'] = sample['is_crowd'][keep_index] if len(
                    keep_index) > 0 else np.zeros(
                        [0, 1], dtype=np.float32)

        # apply polygon
        if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
            sample['gt_poly'] = self.apply_segm(sample['gt_poly'], region,
                                                image_shape)
            if keep_index is not None:
                sample['gt_poly'] = sample['gt_poly'][keep_index]
        # apply gt_segm
        if 'gt_segm' in sample and len(sample['gt_segm']) > 0:
            i, j, h, w = region
            sample['gt_segm'] = sample['gt_segm'][:, i:i + h, j:j + w]
            if keep_index is not None:
                sample['gt_segm'] = sample['gt_segm'][keep_index]

        return sample

    def apply_bbox(self, bbox, region):
        i, j, h, w = region
        region_size = np.asarray([w, h])
        crop_bbox = bbox - np.asarray([j, i, j, i])
        crop_bbox = np.minimum(crop_bbox.reshape([-1, 2, 2]), region_size)
        crop_bbox = crop_bbox.clip(min=0)
        return crop_bbox.reshape([-1, 4]).astype('float32')

    def apply_segm(self, segms, region, image_shape):
        def _crop_poly(segm, crop):
            xmin, ymin, xmax, ymax = crop
            crop_coord = [xmin, ymin, xmin, ymax, xmax, ymax, xmax, ymin]
            crop_p = np.array(crop_coord).reshape(4, 2)
            crop_p = Polygon(crop_p)

            crop_segm = list()
            for poly in segm:
                poly = np.array(poly).reshape(len(poly) // 2, 2)
                polygon = Polygon(poly)
                if not polygon.is_valid:
                    exterior = polygon.exterior
                    multi_lines = exterior.intersection(exterior)
                    polygons = shapely.ops.polygonize(multi_lines)
                    polygon = MultiPolygon(polygons)
                multi_polygon = list()
                if isinstance(polygon, MultiPolygon):
                    multi_polygon = copy.deepcopy(polygon)
                else:
                    multi_polygon.append(copy.deepcopy(polygon))
                for per_polygon in multi_polygon:
                    inter = per_polygon.intersection(crop_p)
                    if not inter:
                        continue
                    if isinstance(inter, (MultiPolygon, GeometryCollection)):
                        for part in inter:
                            if not isinstance(part, Polygon):
                                continue
                            part = np.squeeze(
                                np.array(part.exterior.coords[:-1]).reshape(1,
                                                                            -1))
                            part[0::2] -= xmin
                            part[1::2] -= ymin
                            crop_segm.append(part.tolist())
                    elif isinstance(inter, Polygon):
                        crop_poly = np.squeeze(
                            np.array(inter.exterior.coords[:-1]).reshape(1, -1))
                        crop_poly[0::2] -= xmin
                        crop_poly[1::2] -= ymin
                        crop_segm.append(crop_poly.tolist())
                    else:
                        continue
            return crop_segm

        def _crop_rle(rle, crop, height, width):
            if 'counts' in rle and type(rle['counts']) == list:
                rle = mask_util.frPyObjects(rle, height, width)
            mask = mask_util.decode(rle)
            mask = mask[crop[1]:crop[3], crop[0]:crop[2]]
            rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8))
            return rle

        i, j, h, w = region
        crop = [j, i, j + w, i + h]
        height, width = image_shape
        crop_segms = []
        for segm in segms:
            if is_poly(segm):
                import copy
                import shapely.ops
                from shapely.geometry import Polygon, MultiPolygon, GeometryCollection
                # Polygon format
                crop_segms.append(_crop_poly(segm, crop))
            else:
                # RLE format
                import pycocotools.mask as mask_util
                crop_segms.append(_crop_rle(segm, crop, height, width))
        return crop_segms

    def apply(self, sample, context=None):
        h = random.randint(self.min_size,
                           min(sample['image'].shape[0], self.max_size))
        w = random.randint(self.min_size,
                           min(sample['image'].shape[1], self.max_size))

        region = self.get_crop_params(sample['image'].shape[:2], [h, w])
        return self.crop(sample, region)