train.py 7.5 KB
Newer Older
W
wangguanzhong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

F
FDInSky 已提交
15 16 17
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
18 19 20 21 22 23
import os, sys
# add python path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
if parent_path not in sys.path:
    sys.path.append(parent_path)

F
FDInSky 已提交
24 25 26 27 28
import time
# ignore numba warning
import warnings
warnings.filterwarnings('ignore')
import random
29
import datetime
F
FDInSky 已提交
30
import numpy as np
31
from collections import deque
W
wangxinxin08 已提交
32
import paddle
F
FDInSky 已提交
33
from ppdet.core.workspace import load_config, merge_config, create
34
from ppdet.utils.stats import TrainingStats
F
FDInSky 已提交
35 36
from ppdet.utils.check import check_gpu, check_version, check_config
from ppdet.utils.cli import ArgsParser
W
wangguanzhong 已提交
37
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight, save_model
G
Guanghua Yu 已提交
38
from paddle.distributed import ParallelEnv
39 40 41 42
import logging
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)
F
FDInSky 已提交
43 44 45 46 47


def parse_args():
    parser = ArgsParser()
    parser.add_argument(
W
wangguanzhong 已提交
48
        "--weight_type",
F
FDInSky 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
        default='pretrain',
        type=str,
        help="Loading Checkpoints only support 'pretrain', 'finetune', 'resume'."
    )
    parser.add_argument(
        "--fp16",
        action='store_true',
        default=False,
        help="Enable mixed precision training.")
    parser.add_argument(
        "--loss_scale",
        default=8.,
        type=float,
        help="Mixed precision training loss scale.")
    parser.add_argument(
        "--eval",
        action='store_true',
        default=False,
        help="Whether to perform evaluation in train")
    parser.add_argument(
        "--output_eval",
        default=None,
        type=str,
        help="Evaluation directory, default is current directory.")
    parser.add_argument(
        "--use_tb",
        type=bool,
        default=False,
        help="whether to record the data to Tensorboard.")
    parser.add_argument(
        '--tb_log_dir',
        type=str,
        default="tb_log_dir/scalar",
        help='Tensorboard logging directory for scalar.')
    parser.add_argument(
        "--enable_ce",
        type=bool,
        default=False,
        help="If set True, enable continuous evaluation job."
        "This flag is only used for internal test.")
    parser.add_argument(
        "--use_gpu", action='store_true', default=False, help="data parallel")

    parser.add_argument(
        '--is_profiler',
        type=int,
        default=0,
        help='The switch of profiler tools. (used for benchmark)')

    args = parser.parse_args()
    return args


G
Guanghua Yu 已提交
102
def run(FLAGS, cfg, place):
F
FDInSky 已提交
103 104 105 106 107 108 109 110
    env = os.environ
    FLAGS.dist = 'PADDLE_TRAINER_ID' in env and 'PADDLE_TRAINERS_NUM' in env
    if FLAGS.dist:
        trainer_id = int(env['PADDLE_TRAINER_ID'])
        local_seed = (99 + trainer_id)
        random.seed(local_seed)
        np.random.seed(local_seed)

111
    if FLAGS.enable_ce:
F
FDInSky 已提交
112 113 114
        random.seed(0)
        np.random.seed(0)

G
Guanghua Yu 已提交
115
    if ParallelEnv().nranks > 1:
116 117
        paddle.distributed.init_parallel_env()

G
Guanghua Yu 已提交
118 119 120 121 122
    # Data 
    dataset = cfg.TrainDataset
    train_loader, step_per_epoch = create('TrainReader')(
        dataset, cfg['worker_num'], place)

F
FDInSky 已提交
123
    # Model
124
    model = create(cfg.architecture)
F
FDInSky 已提交
125 126

    # Optimizer
W
wangguanzhong 已提交
127
    lr = create('LearningRate')(step_per_epoch)
F
FDInSky 已提交
128 129 130
    optimizer = create('OptimizerBuilder')(lr, model.parameters())

    # Init Model & Optimzer   
W
wangguanzhong 已提交
131 132 133 134 135 136
    if FLAGS.weight_type == 'resume':
        load_weight(model, cfg.pretrain_weights, optimizer)
    else:
        load_pretrain_weight(model, cfg.pretrain_weights,
                             cfg.get('load_static_weights', False),
                             FLAGS.weight_type)
F
FDInSky 已提交
137

138 139 140 141 142 143 144 145
    if getattr(model.backbone, 'norm_type', None) == 'sync_bn':
        assert cfg.use_gpu and ParallelEnv(
        ).nranks > 1, 'you should use bn rather than sync_bn while using a single gpu'
    # sync_bn = (getattr(model.backbone, 'norm_type', None) == 'sync_bn' and
    #            cfg.use_gpu and ParallelEnv().nranks > 1)
    # if sync_bn:
    #     model = paddle.nn.SyncBatchNorm.convert_sync_batchnorm(model)

W
wangguanzhong 已提交
146
    # Parallel Model 
G
Guanghua Yu 已提交
147
    if ParallelEnv().nranks > 1:
148
        model = paddle.DataParallel(model)
W
wangguanzhong 已提交
149

150
    fields = train_loader.collate_fn.output_fields
G
Guanghua Yu 已提交
151
    # Run Train
152
    time_stat = deque(maxlen=cfg.log_iter)
153 154
    start_time = time.time()
    end_time = time.time()
W
wangguanzhong 已提交
155 156
    # Run Train
    start_epoch = optimizer.state_dict()['LR_Scheduler']['last_epoch']
157 158
    for epoch_id in range(int(cfg.epoch)):
        cur_eid = epoch_id + start_epoch
159
        train_loader.dataset.epoch = cur_eid
G
Guanghua Yu 已提交
160 161 162 163 164
        for iter_id, data in enumerate(train_loader):
            start_time = end_time
            end_time = time.time()
            time_stat.append(end_time - start_time)
            time_cost = np.mean(time_stat)
W
wangguanzhong 已提交
165 166
            eta_sec = (
                (cfg.epoch - cur_eid) * step_per_epoch - iter_id) * time_cost
G
Guanghua Yu 已提交
167 168 169 170
            eta = str(datetime.timedelta(seconds=int(eta_sec)))

            # Model Forward
            model.train()
171
            outputs = model(data, fields, 'train')
G
Guanghua Yu 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

            # Model Backward
            loss = outputs['loss']
            if ParallelEnv().nranks > 1:
                loss = model.scale_loss(loss)
                loss.backward()
                model.apply_collective_grads()
            else:
                loss.backward()
            optimizer.step()
            curr_lr = optimizer.get_lr()
            lr.step()
            optimizer.clear_grad()

            if ParallelEnv().nranks < 2 or ParallelEnv().local_rank == 0:
                # Log state 
188
                if epoch_id == 0 and iter_id == 0:
G
Guanghua Yu 已提交
189 190 191 192
                    train_stats = TrainingStats(cfg.log_iter, outputs.keys())
                train_stats.update(outputs)
                logs = train_stats.log()
                if iter_id % cfg.log_iter == 0:
W
wangguanzhong 已提交
193 194 195
                    ips = float(cfg['TrainReader']['batch_size']) / time_cost
                    strs = 'Epoch:{}: iter: {}, lr: {:.6f}, {}, eta: {}, batch_cost: {:.5f} sec, ips: {:.5f} images/sec'.format(
                        cur_eid, iter_id, curr_lr, logs, eta, time_cost, ips)
G
Guanghua Yu 已提交
196 197 198
                    logger.info(strs)

        # Save Stage 
199 200 201
        if ParallelEnv().local_rank == 0 and (
                cur_eid % cfg.snapshot_epoch == 0 or
            (cur_eid + 1) == int(cfg.epoch)):
G
Guanghua Yu 已提交
202
            cfg_name = os.path.basename(FLAGS.config).split('.')[0]
W
wangguanzhong 已提交
203
            save_name = str(cur_eid) if cur_eid + 1 != int(
G
Guanghua Yu 已提交
204 205
                cfg.epoch) else "model_final"
            save_dir = os.path.join(cfg.save_dir, cfg_name)
W
wangguanzhong 已提交
206
            save_model(model, optimizer, save_dir, save_name)
F
FDInSky 已提交
207 208 209


def main():
210 211 212 213 214 215 216 217
    FLAGS = parse_args()

    cfg = load_config(FLAGS.config)
    merge_config(FLAGS.opt)
    check_config(cfg)
    check_gpu(cfg.use_gpu)
    check_version()

G
Guanghua Yu 已提交
218 219 220 221
    place = 'gpu:{}'.format(ParallelEnv().dev_id) if cfg.use_gpu else 'cpu'
    place = paddle.set_device(place)

    run(FLAGS, cfg, place)
F
FDInSky 已提交
222 223 224 225


if __name__ == "__main__":
    main()