shufflenet_v2.py 8.1 KB
Newer Older
G
Guanghua Yu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
import paddle.nn as nn
from paddle import ParamAttr
from paddle.nn import Conv2D, MaxPool2D, AdaptiveAvgPool2D, BatchNorm
from paddle.nn.initializer import KaimingNormal
G
Guanghua Yu 已提交
24
from paddle.regularizer import L2Decay
G
Guanghua Yu 已提交
25 26 27 28

from ppdet.core.workspace import register, serializable
from numbers import Integral
from ..shape_spec import ShapeSpec
J
JYChen 已提交
29
from ppdet.modeling.ops import channel_shuffle
G
Guanghua Yu 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

__all__ = ['ShuffleNetV2']


class ConvBNLayer(nn.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride,
                 padding,
                 groups=1,
                 act=None):
        super(ConvBNLayer, self).__init__()
        self._conv = Conv2D(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            groups=groups,
            weight_attr=ParamAttr(initializer=KaimingNormal()),
            bias_attr=False)

W
wangxinxin08 已提交
54
        self._batch_norm = BatchNorm2D(
G
Guanghua Yu 已提交
55
            out_channels,
W
wangxinxin08 已提交
56 57 58
            weight_attr=ParamAttr(regularizer=L2Decay(0.0)),
            bias_attr=ParamAttr(regularizer=L2Decay(0.0)))
        self.act = act
G
Guanghua Yu 已提交
59 60 61 62

    def forward(self, inputs):
        y = self._conv(inputs)
        y = self._batch_norm(y)
W
wangxinxin08 已提交
63 64
        if self.act:
            y = getattr(F, self.act)(y)
G
Guanghua Yu 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
        return y


class InvertedResidual(nn.Layer):
    def __init__(self, in_channels, out_channels, stride, act="relu"):
        super(InvertedResidual, self).__init__()
        self._conv_pw = ConvBNLayer(
            in_channels=in_channels // 2,
            out_channels=out_channels // 2,
            kernel_size=1,
            stride=1,
            padding=0,
            groups=1,
            act=act)
        self._conv_dw = ConvBNLayer(
            in_channels=out_channels // 2,
            out_channels=out_channels // 2,
            kernel_size=3,
            stride=stride,
            padding=1,
            groups=out_channels // 2,
            act=None)
        self._conv_linear = ConvBNLayer(
            in_channels=out_channels // 2,
            out_channels=out_channels // 2,
            kernel_size=1,
            stride=1,
            padding=0,
            groups=1,
            act=act)

    def forward(self, inputs):
        x1, x2 = paddle.split(
            inputs,
            num_or_sections=[inputs.shape[1] // 2, inputs.shape[1] // 2],
            axis=1)
        x2 = self._conv_pw(x2)
        x2 = self._conv_dw(x2)
        x2 = self._conv_linear(x2)
        out = paddle.concat([x1, x2], axis=1)
        return channel_shuffle(out, 2)


class InvertedResidualDS(nn.Layer):
    def __init__(self, in_channels, out_channels, stride, act="relu"):
        super(InvertedResidualDS, self).__init__()

        # branch1
        self._conv_dw_1 = ConvBNLayer(
            in_channels=in_channels,
            out_channels=in_channels,
            kernel_size=3,
            stride=stride,
            padding=1,
            groups=in_channels,
            act=None)
        self._conv_linear_1 = ConvBNLayer(
            in_channels=in_channels,
            out_channels=out_channels // 2,
            kernel_size=1,
            stride=1,
            padding=0,
            groups=1,
            act=act)
        # branch2
        self._conv_pw_2 = ConvBNLayer(
            in_channels=in_channels,
            out_channels=out_channels // 2,
            kernel_size=1,
            stride=1,
            padding=0,
            groups=1,
            act=act)
        self._conv_dw_2 = ConvBNLayer(
            in_channels=out_channels // 2,
            out_channels=out_channels // 2,
            kernel_size=3,
            stride=stride,
            padding=1,
            groups=out_channels // 2,
            act=None)
        self._conv_linear_2 = ConvBNLayer(
            in_channels=out_channels // 2,
            out_channels=out_channels // 2,
            kernel_size=1,
            stride=1,
            padding=0,
            groups=1,
            act=act)

    def forward(self, inputs):
        x1 = self._conv_dw_1(inputs)
        x1 = self._conv_linear_1(x1)
        x2 = self._conv_pw_2(inputs)
        x2 = self._conv_dw_2(x2)
        x2 = self._conv_linear_2(x2)
        out = paddle.concat([x1, x2], axis=1)

        return channel_shuffle(out, 2)


@register
@serializable
class ShuffleNetV2(nn.Layer):
G
Guanghua Yu 已提交
169
    def __init__(self, scale=1.0, act="relu", feature_maps=[5, 13, 17]):
G
Guanghua Yu 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
        super(ShuffleNetV2, self).__init__()
        self.scale = scale
        if isinstance(feature_maps, Integral):
            feature_maps = [feature_maps]
        self.feature_maps = feature_maps
        stage_repeats = [4, 8, 4]

        if scale == 0.25:
            stage_out_channels = [-1, 24, 24, 48, 96, 512]
        elif scale == 0.33:
            stage_out_channels = [-1, 24, 32, 64, 128, 512]
        elif scale == 0.5:
            stage_out_channels = [-1, 24, 48, 96, 192, 1024]
        elif scale == 1.0:
            stage_out_channels = [-1, 24, 116, 232, 464, 1024]
        elif scale == 1.5:
            stage_out_channels = [-1, 24, 176, 352, 704, 1024]
        elif scale == 2.0:
            stage_out_channels = [-1, 24, 224, 488, 976, 2048]
        else:
            raise NotImplementedError("This scale size:[" + str(scale) +
                                      "] is not implemented!")

        self._out_channels = []
        self._feature_idx = 0
        # 1. conv1
        self._conv1 = ConvBNLayer(
            in_channels=3,
            out_channels=stage_out_channels[1],
            kernel_size=3,
            stride=2,
            padding=1,
            act=act)
        self._max_pool = MaxPool2D(kernel_size=3, stride=2, padding=1)
        self._feature_idx += 1

        # 2. bottleneck sequences
        self._block_list = []
        for stage_id, num_repeat in enumerate(stage_repeats):
            for i in range(num_repeat):
                if i == 0:
                    block = self.add_sublayer(
                        name=str(stage_id + 2) + '_' + str(i + 1),
                        sublayer=InvertedResidualDS(
                            in_channels=stage_out_channels[stage_id + 1],
                            out_channels=stage_out_channels[stage_id + 2],
                            stride=2,
                            act=act))
                else:
                    block = self.add_sublayer(
                        name=str(stage_id + 2) + '_' + str(i + 1),
                        sublayer=InvertedResidual(
                            in_channels=stage_out_channels[stage_id + 2],
                            out_channels=stage_out_channels[stage_id + 2],
                            stride=1,
                            act=act))
                self._block_list.append(block)
                self._feature_idx += 1
                self._update_out_channels(stage_out_channels[stage_id + 2],
                                          self._feature_idx, self.feature_maps)

    def _update_out_channels(self, channel, feature_idx, feature_maps):
        if feature_idx in feature_maps:
            self._out_channels.append(channel)

    def forward(self, inputs):
        y = self._conv1(inputs['image'])
        y = self._max_pool(y)
        outs = []
        for i, inv in enumerate(self._block_list):
            y = inv(y)
            if i + 2 in self.feature_maps:
                outs.append(y)

        return outs

    @property
    def out_shape(self):
        return [ShapeSpec(channels=c) for c in self._out_channels]