test_activation_op.py 30.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Q
qijun 已提交
15 16
import unittest
import numpy as np
K
Kexin Zhao 已提交
17
import paddle.fluid.core as core
Q
qijun 已提交
18
from op_test import OpTest
A
Abhinav Arora 已提交
19
from scipy.special import expit
Q
qijun 已提交
20 21 22 23 24


class TestExp(OpTest):
    def setUp(self):
        self.op_type = "exp"
25 26 27 28 29 30 31 32
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.exp(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
33 34 35 36 37

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
38 39
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
40
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
Q
qijun 已提交
41

42 43 44 45 46 47 48 49 50 51 52 53 54 55
    def init_dtype(self):
        pass


class TestFP16Exp(TestExp):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

Q
qijun 已提交
56 57 58 59

class TestSigmoid(OpTest):
    def setUp(self):
        self.op_type = "sigmoid"
60 61 62 63 64 65 66 67
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = 1 / (1 + np.exp(-x))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
68 69 70 71

    def test_check_output(self):
        self.check_output()

72
    def test_check_grad(self):
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.01)

    def init_dtype(self):
        pass


class TestFP16Sigmoid(TestSigmoid):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)
90 91


92 93 94
class TestLogSigmoid(OpTest):
    def setUp(self):
        self.op_type = "logsigmoid"
95 96 97 98 99 100 101 102
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = np.log(1 / (1 + np.exp(-x)))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
103 104 105 106 107

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
108 109
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
110
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
111

112 113 114 115 116 117 118 119 120 121 122 123 124 125
    def init_dtype(self):
        pass


class TestFP16LogSigmoid(TestLogSigmoid):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

126

127 128 129
class TestTanh(OpTest):
    def setUp(self):
        self.op_type = "tanh"
130 131 132 133 134 135 136 137
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.tanh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
138 139 140 141 142

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
143 144
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
145
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
146

147 148 149 150 151 152 153 154 155 156 157 158 159 160
    def init_dtype(self):
        pass


class TestFP16Tanh(TestTanh):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

161

K
Kavya Srinet 已提交
162 163 164
class TestTanhShrink(OpTest):
    def setUp(self):
        self.op_type = "tanh_shrink"
165 166 167 168 169 170 171 172
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [10, 17]).astype(self.dtype)
        out = x - np.tanh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
K
Kavya Srinet 已提交
173 174 175 176 177

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
178 179
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
180
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
K
Kavya Srinet 已提交
181

182 183 184 185 186 187 188 189 190 191 192 193 194 195
    def init_dtype(self):
        pass


class TestFP16TanhShrink(TestTanhShrink):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

K
Kavya Srinet 已提交
196

197 198 199
class TestHardShrink(OpTest):
    def setUp(self):
        self.op_type = "hard_shrink"
200 201 202
        self.dtype = np.float32
        self.init_dtype()

203
        threshold = 0.5
204 205 206
        x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
        out = np.copy(x)
        out[(out >= -threshold) & (out <= threshold)] = 0
207 208

        self.attrs = {'lambda': threshold}
209 210
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
211 212 213 214 215

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
216 217
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
218
        self.check_grad(['X'], 'Out', max_relative_error=0.005)
219

220 221 222 223 224 225 226 227 228 229 230 231 232 233
    def init_dtype(self):
        pass


class TestFP16HardShrink(TestHardShrink):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

234

235 236 237
class TestSoftShrink(OpTest):
    def setUp(self):
        self.op_type = "softshrink"
238 239 240
        self.dtype = np.float32
        self.init_dtype()

241
        lambda_val = 0.1
242 243 244 245 246
        x = np.random.uniform(0.25, 10, [4, 4]).astype(self.dtype)
        out = np.copy(x)
        out = (out < -lambda_val) * (out + lambda_val) + (out > lambda_val) * (
            out - lambda_val)

247
        self.attrs = {'lambda': lambda_val}
248 249
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
250 251 252 253 254

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
255 256
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
257
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
258

259 260 261 262 263 264 265 266 267 268 269 270 271 272
    def init_dtype(self):
        pass


class TestFP16SoftShrink(TestSoftShrink):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

273

274 275 276
class TestSqrt(OpTest):
    def setUp(self):
        self.op_type = "sqrt"
277 278 279 280 281 282 283 284
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.sqrt(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
285 286 287 288 289

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
290 291
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
292
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
293

294 295 296 297 298 299 300 301 302 303 304 305 306 307
    def init_dtype(self):
        pass


class TestFP16Sqrt(TestSqrt):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

308 309 310 311

class TestAbs(OpTest):
    def setUp(self):
        self.op_type = "abs"
312 313 314 315
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
Q
qijun 已提交
316 317 318 319 320
        # Because we set delta = 0.005 in caculating numeric gradient,
        # if x is too small, such as 0.002, x_neg will be -0.003
        # x_pos will be 0.007, so the numeric gradient is unaccurate.
        # we should avoid this
        x[np.abs(x) < 0.005] = 0.02
321 322 323 324
        out = np.abs(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
325 326 327 328 329

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
330 331
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
332
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
333

334 335 336 337 338 339 340 341 342 343 344 345 346 347
    def init_dtype(self):
        pass


class TestFP16Abs(TestAbs):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

348

D
dzhwinter 已提交
349 350 351
class TestCeil(OpTest):
    def setUp(self):
        self.op_type = "ceil"
352 353 354 355 356 357 358 359
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
        out = np.ceil(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
360 361 362 363

    def test_check_output(self):
        self.check_output()

D
dzhwinter 已提交
364
    # The same reason with TestFloor
D
dzhwinter 已提交
365

366 367 368 369 370 371 372 373 374 375 376 377 378 379
    def init_dtype(self):
        pass


class TestFP16Ceil(TestCeil):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

D
dzhwinter 已提交
380 381 382 383

class TestFloor(OpTest):
    def setUp(self):
        self.op_type = "floor"
384 385 386 387 388 389 390 391
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
        out = np.floor(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
392 393 394 395

    def test_check_output(self):
        self.check_output()

D
dzhwinter 已提交
396 397
    # the gradient on floor, ceil, round is undefined.
    # we return zero as gradient, but the numpy return nan 
D
dzhwinter 已提交
398

399 400 401 402 403 404 405 406 407 408 409 410 411 412
    def init_dtype(self):
        pass


class TestFP16Floor(TestFloor):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

D
dzhwinter 已提交
413

C
add cos  
chengduoZH 已提交
414 415 416
class TestCos(OpTest):
    def setUp(self):
        self.op_type = "cos"
417 418 419 420 421 422 423 424
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
        out = np.cos(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
C
add sin  
chengduoZH 已提交
425 426 427 428 429

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
430 431
        if self.dtype == np.float16:
            return
C
add sin  
chengduoZH 已提交
432 433
        self.check_grad(['X'], 'Out', max_relative_error=0.007)

434 435 436 437 438 439 440 441 442 443 444 445 446 447
    def init_dtype(self):
        pass


class TestFP16Cos(TestCos):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

C
add sin  
chengduoZH 已提交
448 449 450 451

class TestSin(OpTest):
    def setUp(self):
        self.op_type = "sin"
452 453 454 455 456 457 458 459
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
        out = np.sin(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
C
add cos  
chengduoZH 已提交
460 461 462 463 464

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
465 466
        if self.dtype == np.float16:
            return
C
add cos  
chengduoZH 已提交
467 468
        self.check_grad(['X'], 'Out', max_relative_error=0.007)

469 470 471 472 473 474 475 476 477 478 479 480 481 482
    def init_dtype(self):
        pass


class TestFP16Sin(TestSin):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

C
add cos  
chengduoZH 已提交
483

D
dzhwinter 已提交
484 485 486
class TestRound(OpTest):
    def setUp(self):
        self.op_type = "round"
487 488 489 490 491 492 493 494
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
        out = np.round(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
495 496 497 498

    def test_check_output(self):
        self.check_output()

499 500 501 502 503 504 505 506 507 508 509 510 511 512
    def init_dtype(self):
        pass


class TestFP16Round(TestRound):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

D
dzhwinter 已提交
513

Q
qijun 已提交
514
class TestRelu(OpTest):
515
    def setUp(self):
Q
qijun 已提交
516
        self.op_type = "relu"
K
Kexin Zhao 已提交
517 518 519 520
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
Q
qijun 已提交
521 522
        # The same reason with TestAbs
        x[np.abs(x) < 0.005] = 0.02
K
Kexin Zhao 已提交
523 524 525 526
        out = np.maximum(x, 0)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
527 528 529 530 531

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
K
Kexin Zhao 已提交
532 533
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
534
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
535

K
Kexin Zhao 已提交
536 537 538 539 540 541 542 543 544 545 546 547 548 549
    def init_dtype(self):
        pass


class TestFP16Relu(TestRelu):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

550 551 552 553

class TestBRelu(OpTest):
    def setUp(self):
        self.op_type = "brelu"
554 555 556 557
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
Y
Yang Yang(Tony) 已提交
558 559
        t_min = 1.0
        t_max = 4.0
Q
qijun 已提交
560 561
        # The same with TestAbs
        x[np.abs(x - t_min) < 0.005] = t_min + 0.02
Q
qijun 已提交
562
        x[np.abs(x - t_max) < 0.005] = t_max + 0.02
563 564 565
        t = np.copy(x)
        t[t < t_min] = t_min
        t[t > t_max] = t_max
566 567 568

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'t_min': t_min, 't_max': t_max}
F
fengjiayi 已提交
569
        self.outputs = {'Out': t}
570 571 572 573 574

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
575 576
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
577
        self.check_grad(['X'], 'Out', max_relative_error=0.02)
578

579 580 581 582 583 584 585 586 587 588 589 590 591 592
    def init_dtype(self):
        pass


class TestFP16BRelu(TestBRelu):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

593

594
class TestRelu6(OpTest):
K
Kavya Srinet 已提交
595
    def setUp(self):
596
        self.op_type = "relu6"
597 598 599 600
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(-1, 1, [4, 10]).astype(self.dtype)
601 602 603 604
        threshold = 6.0
        # The same with TestAbs
        x[np.abs(x) < 0.005] = 0.02
        x[np.abs(x - threshold) < 0.005] = threshold + 0.02
605
        out = np.minimum(np.maximum(x, 0), threshold)
606

607
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
608
        self.attrs = {'threshold': threshold}
609
        self.outputs = {'Out': out}
K
Kavya Srinet 已提交
610 611 612 613

    def test_check_output(self):
        self.check_output()

614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.02)

    def init_dtype(self):
        pass


class TestFP16Relu6(TestRelu6):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)
K
Kavya Srinet 已提交
632 633


634 635 636
class TestSoftRelu(OpTest):
    def setUp(self):
        self.op_type = "soft_relu"
637 638 639 640
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(-3, 3, [4, 4]).astype(self.dtype)
Y
Yang Yang(Tony) 已提交
641
        threshold = 2.0
Q
qijun 已提交
642 643 644
        # The same reason with TestAbs
        x[np.abs(x - threshold) < 0.005] = threshold + 0.02
        x[np.abs(x + threshold) < 0.005] = -threshold + 0.02
645 646 647
        t = np.copy(x)
        t[t < -threshold] = -threshold
        t[t > threshold] = threshold
648 649 650 651 652
        out = np.log((np.exp(t) + 1))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'threshold': threshold}
        self.outputs = {'Out': out}
653 654 655 656 657

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
658 659
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
660
        self.check_grad(['X'], 'Out', max_relative_error=0.02)
661

662 663 664 665 666 667 668 669 670 671 672 673 674 675
    def init_dtype(self):
        pass


class TestFP16SoftRelu(TestSoftRelu):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

676

677 678 679
class TestELU(OpTest):
    def setUp(self):
        self.op_type = "elu"
680 681 682 683
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(-3, 3, [4, 4]).astype(self.dtype)
684
        alpha = 1.
685
        out = np.maximum(0, x) + np.minimum(0, alpha * (np.exp(x) - 1))
686 687 688 689
        # Note: unlike other Relu extensions, point 0 on standard ELU function (i.e. alpha = 1)
        # is differentiable, so we can skip modifications like x[np.abs(x) < 0.005] = 0.02 here
        self.inputs = {'X': x}
        self.attrs = {'alpha': alpha}
690
        self.outputs = {'Out': out}
691 692 693 694 695

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
696 697
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
698
        self.check_grad(['X'], 'Out', max_relative_error=0.02)
699

700 701 702 703 704 705 706 707 708 709 710 711 712 713
    def init_dtype(self):
        pass


class TestFP16ELU(TestELU):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

714

Q
qijun 已提交
715 716 717
class TestReciprocal(OpTest):
    def setUp(self):
        self.op_type = "reciprocal"
718 719 720 721 722 723 724 725
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.reciprocal(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
726 727 728 729 730

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
731 732
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
733
        self.check_grad(['X'], 'Out', max_relative_error=0.01)
Q
qijun 已提交
734

735 736 737 738 739 740 741 742 743 744 745 746 747 748
    def init_dtype(self):
        pass


class TestFP16Reciprocal(TestReciprocal):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

Q
qijun 已提交
749 750 751 752

class TestLog(OpTest):
    def setUp(self):
        self.op_type = "log"
753 754 755 756 757 758 759 760
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
761 762 763 764 765

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
766 767
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
768
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
Q
qijun 已提交
769

770 771 772 773 774 775 776 777 778 779 780 781 782 783
    def init_dtype(self):
        pass


class TestFP16Log(TestLog):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

Q
qijun 已提交
784 785 786 787

class TestSquare(OpTest):
    def setUp(self):
        self.op_type = "square"
788 789 790 791 792 793 794 795
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.square(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
796 797 798 799 800

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
801 802
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
803
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
Q
qijun 已提交
804

805 806 807 808 809 810 811 812 813 814 815 816 817 818
    def init_dtype(self):
        pass


class TestFP16Square(TestSquare):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

Q
qijun 已提交
819

820 821 822
class TestPow(OpTest):
    def setUp(self):
        self.op_type = "pow"
823 824 825 826 827 828 829
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.power(x, 3)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
Y
Yang Yang(Tony) 已提交
830
        self.attrs = {'factor': 3.0}
831
        self.outputs = {'Out': out}
832 833 834 835 836

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
837 838
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
839
        self.check_grad(['X'], 'Out', max_relative_error=0.02)
840

841 842 843 844 845 846 847 848 849 850 851 852 853 854
    def init_dtype(self):
        pass


class TestFP16Pow(TestPow):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=5e-2)

855 856 857 858

class TestSTanh(OpTest):
    def setUp(self):
        self.op_type = "stanh"
859 860 861 862
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
863 864
        scale_a = 2.0 / 3.0
        scale_b = 1.7159
865 866 867
        out = scale_b * np.tanh(x * scale_a)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
868
        self.attrs = {'scale_a': scale_a, 'scale_b': scale_b}
869
        self.outputs = {'Out': out}
870 871 872 873

    def test_check_output(self):
        self.check_output()

Q
qijun 已提交
874
    def test_check_grad(self):
875 876
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
877
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
Q
qijun 已提交
878

879 880 881 882 883 884 885 886 887 888 889 890 891 892
    def init_dtype(self):
        pass


class TestFP16STanh(TestSTanh):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

Q
qijun 已提交
893

K
kexinzhao 已提交
894 895 896
class TestSoftplus(OpTest):
    def setUp(self):
        self.op_type = "softplus"
897 898 899 900 901 902 903 904
        self.dtype = np.float64
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = np.log(1 + np.exp(x))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
K
kexinzhao 已提交
905 906 907 908 909

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
910 911
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
912
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
K
kexinzhao 已提交
913

914 915 916 917 918 919 920 921 922 923 924 925 926 927
    def init_dtype(self):
        pass


class TestFP16Softplus(TestSoftplus):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

K
kexinzhao 已提交
928

929 930 931
class TestSoftsign(OpTest):
    def setUp(self):
        self.op_type = "softsign"
932 933 934 935 936 937 938 939
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = np.divide(x, 1 + np.abs(x))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
940 941 942 943 944

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
945 946
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
947
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
948

949 950 951 952 953 954 955 956 957 958 959 960 961 962
    def init_dtype(self):
        pass


class TestFP16Softsign(TestSoftsign):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

963

964 965 966
class TestThresholdedRelu(OpTest):
    def setUp(self):
        self.op_type = "thresholded_relu"
967 968 969
        self.dtype = np.float32
        self.init_dtype()

970 971
        threshold = 0.25
        self.relative_error = 0.005
972
        X = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
973 974 975

        # Same reason as TestAbs
        X[np.abs(X - threshold) < self.relative_error] = threshold + 0.2
976
        out = (X > threshold) * X
977

978
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(X)}
979
        self.attrs = {'threshold': threshold}
980
        self.outputs = {'Out': out}
981 982 983 984 985

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
986 987
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
988
        self.check_grad(['X'], 'Out', max_relative_error=self.relative_error)
989

990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
    def init_dtype(self):
        pass


class TestFP16ThresholdedRelu(TestThresholdedRelu):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

1004

1005 1006 1007
class TestHardSigmoid(OpTest):
    def setUp(self):
        self.op_type = "hard_sigmoid"
1008 1009 1010
        self.dtype = np.float32
        self.init_dtype()

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
        self.relative_error = 0.002

        X = np.random.uniform(-5, 5, [2, 2]).astype("float32")
        slope = 0.2
        offset = 0.5
        lower_threshold = -offset / slope
        upper_threshold = (1 - offset) / slope

        # Same reason as TestAbs
        X[np.abs(X - lower_threshold) < self.relative_error] = \
            lower_threshold + 0.2
        X[np.abs(X - upper_threshold) < self.relative_error] = \
            upper_threshold - 0.2

        temp = X * slope + offset
1026 1027 1028 1029
        out = np.maximum(0.0, np.minimum(1.0, temp))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(X)}
        self.outputs = {'Out': out}
1030 1031 1032 1033 1034

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
1035 1036
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
1037
        self.check_grad(['X'], 'Out', max_relative_error=0.002)
1038

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
    def init_dtype(self):
        pass


class TestFP16HardSigmoid(TestHardSigmoid):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

1053

A
Abhinav Arora 已提交
1054 1055 1056
class TestSwish(OpTest):
    def setUp(self):
        self.op_type = "swish"
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
        self.dtype = np.float32
        self.init_dtype()

        X = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        beta = 2.3
        out = X * expit(beta * X)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(X)}
        self.attrs = {'beta': beta}
        self.outputs = {'Out': out}
A
Abhinav Arora 已提交
1067 1068 1069 1070 1071

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
1072 1073
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
1074
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
A
Abhinav Arora 已提交
1075

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
    def init_dtype(self):
        pass


class TestFP16Swish(TestSwish):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

A
Abhinav Arora 已提交
1090

1091
#--------------------test MKLDNN--------------------
1092
class TestMKLDNNReluDim2(TestRelu):
1093
    def setUp(self):
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
        super(TestMKLDNNReluDim2, self).setUp()

        self.attrs = {"use_mkldnn": True}


class TestMKLDNNTanhDim2(TestTanh):
    def setUp(self):
        super(TestMKLDNNTanhDim2, self).setUp()

        self.attrs = {"use_mkldnn": True}


class TestMKLDNNSqrtDim2(TestSqrt):
    def setUp(self):
        super(TestMKLDNNSqrtDim2, self).setUp()

        self.attrs = {"use_mkldnn": True}


class TestMKLDNNAbsDim2(TestAbs):
    def setUp(self):
        super(TestMKLDNNAbsDim2, self).setUp()

        self.attrs = {"use_mkldnn": True}


class TestMKLDNNReluDim4(TestRelu):
    def setUp(self):
        super(TestMKLDNNReluDim4, self).setUp()
1123

1124 1125 1126
        x = np.random.uniform(-1, 1, [2, 4, 3, 5]).astype("float32")
        # The same reason with TestAbs
        x[np.abs(x) < 0.005] = 0.02
1127
        out = np.maximum(x, 0)
1128

1129 1130 1131
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
        self.attrs = {"use_mkldnn": True}
1132 1133


1134
class TestMKLDNNTanhDim4(TestTanh):
1135
    def setUp(self):
1136
        super(TestMKLDNNTanhDim4, self).setUp()
1137

1138 1139 1140 1141
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [2, 4, 3, 5]).astype("float32")
        }
        self.outputs = {'Out': np.tanh(self.inputs['X'])}
K
Krzysztof Binias 已提交
1142
        self.attrs = {"use_mkldnn": True}
1143 1144


1145
class TestMKLDNNSqrtDim4(TestSqrt):
1146
    def setUp(self):
1147
        super(TestMKLDNNSqrtDim4, self).setUp()
1148

1149 1150 1151 1152
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [2, 4, 3, 5]).astype("float32")
        }
        self.outputs = {'Out': np.sqrt(self.inputs['X'])}
K
Krzysztof Binias 已提交
1153
        self.attrs = {"use_mkldnn": True}
1154 1155


1156
class TestMKLDNNAbsDim4(TestAbs):
1157
    def setUp(self):
1158
        super(TestMKLDNNAbsDim4, self).setUp()
1159

1160 1161 1162 1163 1164
        x = np.random.uniform(-1, 1, [2, 4, 3, 5]).astype("float32")
        # The same reason with TestAbs
        x[np.abs(x) < 0.005] = 0.02
        self.inputs = {'X': x}
        self.outputs = {'Out': np.abs(self.inputs['X'])}
K
Krzysztof Binias 已提交
1165
        self.attrs = {"use_mkldnn": True}
1166 1167


Q
qijun 已提交
1168 1169
if __name__ == "__main__":
    unittest.main()