# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle.fluid.core as core from op_test import OpTest from scipy.special import expit class TestExp(OpTest): def setUp(self): self.op_type = "exp" self.dtype = np.float32 self.init_dtype() x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype) out = np.exp(x) self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): if self.dtype == np.float16: return self.check_grad(['X'], 'Out', max_relative_error=0.007) def init_dtype(self): pass class TestFP16Exp(TestExp): def init_dtype(self): self.dtype = np.float16 def test_check_output(self): if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_output_with_place(place, atol=1e-3) class TestSigmoid(OpTest): def setUp(self): self.op_type = "sigmoid" self.dtype = np.float32 self.init_dtype() x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype) out = 1 / (1 + np.exp(-x)) self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): if self.dtype == np.float16: return self.check_grad(['X'], 'Out', max_relative_error=0.01) def init_dtype(self): pass class TestFP16Sigmoid(TestSigmoid): def init_dtype(self): self.dtype = np.float16 def test_check_output(self): if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_output_with_place(place, atol=1e-3) class TestLogSigmoid(OpTest): def setUp(self): self.op_type = "logsigmoid" self.dtype = np.float32 self.init_dtype() x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype) out = np.log(1 / (1 + np.exp(-x))) self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): if self.dtype == np.float16: return self.check_grad(['X'], 'Out', max_relative_error=0.008) def init_dtype(self): pass class TestFP16LogSigmoid(TestLogSigmoid): def init_dtype(self): self.dtype = np.float16 def test_check_output(self): if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_output_with_place(place, atol=1e-3) class TestTanh(OpTest): def setUp(self): self.op_type = "tanh" self.dtype = np.float32 self.init_dtype() x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype) out = np.tanh(x) self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): if self.dtype == np.float16: return self.check_grad(['X'], 'Out', max_relative_error=0.007) def init_dtype(self): pass class TestFP16Tanh(TestTanh): def init_dtype(self): self.dtype = np.float16 def test_check_output(self): if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_output_with_place(place, atol=1e-3) class TestTanhShrink(OpTest): def setUp(self): self.op_type = "tanh_shrink" self.dtype = np.float32 self.init_dtype() x = np.random.uniform(0.1, 1, [10, 17]).astype(self.dtype) out = x - np.tanh(x) self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): if self.dtype == np.float16: return self.check_grad(['X'], 'Out', max_relative_error=0.008) def init_dtype(self): pass class TestFP16TanhShrink(TestTanhShrink): def init_dtype(self): self.dtype = np.float16 def test_check_output(self): if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_output_with_place(place, atol=1e-3) class TestHardShrink(OpTest): def setUp(self): self.op_type = "hard_shrink" self.dtype = np.float32 self.init_dtype() threshold = 0.5 x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype) out = np.copy(x) out[(out >= -threshold) & (out <= threshold)] = 0 self.attrs = {'lambda': threshold} self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): if self.dtype == np.float16: return self.check_grad(['X'], 'Out', max_relative_error=0.005) def init_dtype(self): pass class TestFP16HardShrink(TestHardShrink): def init_dtype(self): self.dtype = np.float16 def test_check_output(self): if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_output_with_place(place, atol=1e-3) class TestSoftShrink(OpTest): def setUp(self): self.op_type = "softshrink" self.dtype = np.float32 self.init_dtype() lambda_val = 0.1 x = np.random.uniform(0.25, 10, [4, 4]).astype(self.dtype) out = np.copy(x) out = (out < -lambda_val) * (out + lambda_val) + (out > lambda_val) * ( out - lambda_val) self.attrs = {'lambda': lambda_val} self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): if self.dtype == np.float16: return self.check_grad(['X'], 'Out', max_relative_error=0.007) def init_dtype(self): pass class TestFP16SoftShrink(TestSoftShrink): def init_dtype(self): self.dtype = np.float16 def test_check_output(self): if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_output_with_place(place, atol=1e-3) class TestSqrt(OpTest): def setUp(self): self.op_type = "sqrt" self.dtype = np.float32 self.init_dtype() x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype) out = np.sqrt(x) self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): if self.dtype == np.float16: return self.check_grad(['X'], 'Out', max_relative_error=0.007) def init_dtype(self): pass class TestFP16Sqrt(TestSqrt): def init_dtype(self): self.dtype = np.float16 def test_check_output(self): if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_output_with_place(place, atol=1e-3) class TestAbs(OpTest): def setUp(self): self.op_type = "abs" self.dtype = np.float32 self.init_dtype() x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype) # Because we set delta = 0.005 in caculating numeric gradient, # if x is too small, such as 0.002, x_neg will be -0.003 # x_pos will be 0.007, so the numeric gradient is unaccurate. # we should avoid this x[np.abs(x) < 0.005] = 0.02 out = np.abs(x) self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): if self.dtype == np.float16: return self.check_grad(['X'], 'Out', max_relative_error=0.007) def init_dtype(self): pass class TestFP16Abs(TestAbs): def init_dtype(self): self.dtype = np.float16 def test_check_output(self): if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_output_with_place(place, atol=1e-3) class TestCeil(OpTest): def setUp(self): self.op_type = "ceil" self.dtype = np.float32 self.init_dtype() x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype) out = np.ceil(x) self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} self.outputs = {'Out': out} def test_check_output(self): self.check_output() # The same reason with TestFloor def init_dtype(self): pass class TestFP16Ceil(TestCeil): def init_dtype(self): self.dtype = np.float16 def test_check_output(self): if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_output_with_place(place, atol=1e-3) class TestFloor(OpTest): def setUp(self): self.op_type = "floor" self.dtype = np.float32 self.init_dtype() x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype) out = np.floor(x) self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} self.outputs = {'Out': out} def test_check_output(self): self.check_output() # the gradient on floor, ceil, round is undefined. # we return zero as gradient, but the numpy return nan def init_dtype(self): pass class TestFP16Floor(TestFloor): def init_dtype(self): self.dtype = np.float16 def test_check_output(self): if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_output_with_place(place, atol=1e-3) class TestCos(OpTest): def setUp(self): self.op_type = "cos" self.dtype = np.float32 self.init_dtype() x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype) out = np.cos(x) self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): if self.dtype == np.float16: return self.check_grad(['X'], 'Out', max_relative_error=0.007) def init_dtype(self): pass class TestFP16Cos(TestCos): def init_dtype(self): self.dtype = np.float16 def test_check_output(self): if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_output_with_place(place, atol=1e-3) class TestSin(OpTest): def setUp(self): self.op_type = "sin" self.dtype = np.float32 self.init_dtype() x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype) out = np.sin(x) self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): if self.dtype == np.float16: return self.check_grad(['X'], 'Out', max_relative_error=0.007) def init_dtype(self): pass class TestFP16Sin(TestSin): def init_dtype(self): self.dtype = np.float16 def test_check_output(self): if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_output_with_place(place, atol=1e-3) class TestRound(OpTest): def setUp(self): self.op_type = "round" self.dtype = np.float32 self.init_dtype() x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype) out = np.round(x) self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} self.outputs = {'Out': out} def test_check_output(self): self.check_output() def init_dtype(self): pass class TestFP16Round(TestRound): def init_dtype(self): self.dtype = np.float16 def test_check_output(self): if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_output_with_place(place, atol=1e-3) class TestRelu(OpTest): def setUp(self): self.op_type = "relu" self.dtype = np.float32 self.init_dtype() x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype) # The same reason with TestAbs x[np.abs(x) < 0.005] = 0.02 out = np.maximum(x, 0) self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): if self.dtype == np.float16: return self.check_grad(['X'], 'Out', max_relative_error=0.007) def init_dtype(self): pass class TestFP16Relu(TestRelu): def init_dtype(self): self.dtype = np.float16 def test_check_output(self): if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_output_with_place(place, atol=1e-3) class TestBRelu(OpTest): def setUp(self): self.op_type = "brelu" self.dtype = np.float32 self.init_dtype() x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype) t_min = 1.0 t_max = 4.0 # The same with TestAbs x[np.abs(x - t_min) < 0.005] = t_min + 0.02 x[np.abs(x - t_max) < 0.005] = t_max + 0.02 t = np.copy(x) t[t < t_min] = t_min t[t > t_max] = t_max self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} self.attrs = {'t_min': t_min, 't_max': t_max} self.outputs = {'Out': t} def test_check_output(self): self.check_output() def test_check_grad(self): if self.dtype == np.float16: return self.check_grad(['X'], 'Out', max_relative_error=0.02) def init_dtype(self): pass class TestFP16BRelu(TestBRelu): def init_dtype(self): self.dtype = np.float16 def test_check_output(self): if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_output_with_place(place, atol=1e-3) class TestRelu6(OpTest): def setUp(self): self.op_type = "relu6" self.dtype = np.float32 self.init_dtype() x = np.random.uniform(-1, 1, [4, 10]).astype(self.dtype) threshold = 6.0 # The same with TestAbs x[np.abs(x) < 0.005] = 0.02 x[np.abs(x - threshold) < 0.005] = threshold + 0.02 out = np.minimum(np.maximum(x, 0), threshold) self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} self.attrs = {'threshold': threshold} self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): if self.dtype == np.float16: return self.check_grad(['X'], 'Out', max_relative_error=0.02) def init_dtype(self): pass class TestFP16Relu6(TestRelu6): def init_dtype(self): self.dtype = np.float16 def test_check_output(self): if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_output_with_place(place, atol=1e-3) class TestSoftRelu(OpTest): def setUp(self): self.op_type = "soft_relu" self.dtype = np.float32 self.init_dtype() x = np.random.uniform(-3, 3, [4, 4]).astype(self.dtype) threshold = 2.0 # The same reason with TestAbs x[np.abs(x - threshold) < 0.005] = threshold + 0.02 x[np.abs(x + threshold) < 0.005] = -threshold + 0.02 t = np.copy(x) t[t < -threshold] = -threshold t[t > threshold] = threshold out = np.log((np.exp(t) + 1)) self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} self.attrs = {'threshold': threshold} self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): if self.dtype == np.float16: return self.check_grad(['X'], 'Out', max_relative_error=0.02) def init_dtype(self): pass class TestFP16SoftRelu(TestSoftRelu): def init_dtype(self): self.dtype = np.float16 def test_check_output(self): if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_output_with_place(place, atol=1e-3) class TestELU(OpTest): def setUp(self): self.op_type = "elu" self.dtype = np.float32 self.init_dtype() x = np.random.uniform(-3, 3, [4, 4]).astype(self.dtype) alpha = 1. out = np.maximum(0, x) + np.minimum(0, alpha * (np.exp(x) - 1)) # Note: unlike other Relu extensions, point 0 on standard ELU function (i.e. alpha = 1) # is differentiable, so we can skip modifications like x[np.abs(x) < 0.005] = 0.02 here self.inputs = {'X': x} self.attrs = {'alpha': alpha} self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): if self.dtype == np.float16: return self.check_grad(['X'], 'Out', max_relative_error=0.02) def init_dtype(self): pass class TestFP16ELU(TestELU): def init_dtype(self): self.dtype = np.float16 def test_check_output(self): if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_output_with_place(place, atol=1e-3) class TestReciprocal(OpTest): def setUp(self): self.op_type = "reciprocal" self.dtype = np.float32 self.init_dtype() x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype) out = np.reciprocal(x) self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): if self.dtype == np.float16: return self.check_grad(['X'], 'Out', max_relative_error=0.01) def init_dtype(self): pass class TestFP16Reciprocal(TestReciprocal): def init_dtype(self): self.dtype = np.float16 def test_check_output(self): if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_output_with_place(place, atol=1e-3) class TestLog(OpTest): def setUp(self): self.op_type = "log" self.dtype = np.float32 self.init_dtype() x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype) out = np.log(x) self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): if self.dtype == np.float16: return self.check_grad(['X'], 'Out', max_relative_error=0.007) def init_dtype(self): pass class TestFP16Log(TestLog): def init_dtype(self): self.dtype = np.float16 def test_check_output(self): if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_output_with_place(place, atol=1e-3) class TestSquare(OpTest): def setUp(self): self.op_type = "square" self.dtype = np.float32 self.init_dtype() x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype) out = np.square(x) self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): if self.dtype == np.float16: return self.check_grad(['X'], 'Out', max_relative_error=0.007) def init_dtype(self): pass class TestFP16Square(TestSquare): def init_dtype(self): self.dtype = np.float16 def test_check_output(self): if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_output_with_place(place, atol=1e-3) class TestPow(OpTest): def setUp(self): self.op_type = "pow" self.dtype = np.float32 self.init_dtype() x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype) out = np.power(x, 3) self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} self.attrs = {'factor': 3.0} self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): if self.dtype == np.float16: return self.check_grad(['X'], 'Out', max_relative_error=0.02) def init_dtype(self): pass class TestFP16Pow(TestPow): def init_dtype(self): self.dtype = np.float16 def test_check_output(self): if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_output_with_place(place, atol=5e-2) class TestSTanh(OpTest): def setUp(self): self.op_type = "stanh" self.dtype = np.float32 self.init_dtype() x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype) scale_a = 2.0 / 3.0 scale_b = 1.7159 out = scale_b * np.tanh(x * scale_a) self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} self.attrs = {'scale_a': scale_a, 'scale_b': scale_b} self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): if self.dtype == np.float16: return self.check_grad(['X'], 'Out', max_relative_error=0.007) def init_dtype(self): pass class TestFP16STanh(TestSTanh): def init_dtype(self): self.dtype = np.float16 def test_check_output(self): if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_output_with_place(place, atol=1e-3) class TestSoftplus(OpTest): def setUp(self): self.op_type = "softplus" self.dtype = np.float64 self.init_dtype() x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype) out = np.log(1 + np.exp(x)) self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): if self.dtype == np.float16: return self.check_grad(['X'], 'Out', max_relative_error=0.007) def init_dtype(self): pass class TestFP16Softplus(TestSoftplus): def init_dtype(self): self.dtype = np.float16 def test_check_output(self): if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_output_with_place(place, atol=1e-3) class TestSoftsign(OpTest): def setUp(self): self.op_type = "softsign" self.dtype = np.float32 self.init_dtype() x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype) out = np.divide(x, 1 + np.abs(x)) self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): if self.dtype == np.float16: return self.check_grad(['X'], 'Out', max_relative_error=0.007) def init_dtype(self): pass class TestFP16Softsign(TestSoftsign): def init_dtype(self): self.dtype = np.float16 def test_check_output(self): if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_output_with_place(place, atol=1e-3) class TestThresholdedRelu(OpTest): def setUp(self): self.op_type = "thresholded_relu" self.dtype = np.float32 self.init_dtype() threshold = 0.25 self.relative_error = 0.005 X = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype) # Same reason as TestAbs X[np.abs(X - threshold) < self.relative_error] = threshold + 0.2 out = (X > threshold) * X self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(X)} self.attrs = {'threshold': threshold} self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): if self.dtype == np.float16: return self.check_grad(['X'], 'Out', max_relative_error=self.relative_error) def init_dtype(self): pass class TestFP16ThresholdedRelu(TestThresholdedRelu): def init_dtype(self): self.dtype = np.float16 def test_check_output(self): if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_output_with_place(place, atol=1e-3) class TestHardSigmoid(OpTest): def setUp(self): self.op_type = "hard_sigmoid" self.dtype = np.float32 self.init_dtype() self.relative_error = 0.002 X = np.random.uniform(-5, 5, [2, 2]).astype("float32") slope = 0.2 offset = 0.5 lower_threshold = -offset / slope upper_threshold = (1 - offset) / slope # Same reason as TestAbs X[np.abs(X - lower_threshold) < self.relative_error] = \ lower_threshold + 0.2 X[np.abs(X - upper_threshold) < self.relative_error] = \ upper_threshold - 0.2 temp = X * slope + offset out = np.maximum(0.0, np.minimum(1.0, temp)) self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(X)} self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): if self.dtype == np.float16: return self.check_grad(['X'], 'Out', max_relative_error=0.002) def init_dtype(self): pass class TestFP16HardSigmoid(TestHardSigmoid): def init_dtype(self): self.dtype = np.float16 def test_check_output(self): if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_output_with_place(place, atol=1e-3) class TestSwish(OpTest): def setUp(self): self.op_type = "swish" self.dtype = np.float32 self.init_dtype() X = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype) beta = 2.3 out = X * expit(beta * X) self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(X)} self.attrs = {'beta': beta} self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): if self.dtype == np.float16: return self.check_grad(['X'], 'Out', max_relative_error=0.008) def init_dtype(self): pass class TestFP16Swish(TestSwish): def init_dtype(self): self.dtype = np.float16 def test_check_output(self): if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_output_with_place(place, atol=1e-3) #--------------------test MKLDNN-------------------- class TestMKLDNNReluDim2(TestRelu): def setUp(self): super(TestMKLDNNReluDim2, self).setUp() self.attrs = {"use_mkldnn": True} class TestMKLDNNTanhDim2(TestTanh): def setUp(self): super(TestMKLDNNTanhDim2, self).setUp() self.attrs = {"use_mkldnn": True} class TestMKLDNNSqrtDim2(TestSqrt): def setUp(self): super(TestMKLDNNSqrtDim2, self).setUp() self.attrs = {"use_mkldnn": True} class TestMKLDNNAbsDim2(TestAbs): def setUp(self): super(TestMKLDNNAbsDim2, self).setUp() self.attrs = {"use_mkldnn": True} class TestMKLDNNReluDim4(TestRelu): def setUp(self): super(TestMKLDNNReluDim4, self).setUp() x = np.random.uniform(-1, 1, [2, 4, 3, 5]).astype("float32") # The same reason with TestAbs x[np.abs(x) < 0.005] = 0.02 out = np.maximum(x, 0) self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} self.outputs = {'Out': out} self.attrs = {"use_mkldnn": True} class TestMKLDNNTanhDim4(TestTanh): def setUp(self): super(TestMKLDNNTanhDim4, self).setUp() self.inputs = { 'X': np.random.uniform(0.1, 1, [2, 4, 3, 5]).astype("float32") } self.outputs = {'Out': np.tanh(self.inputs['X'])} self.attrs = {"use_mkldnn": True} class TestMKLDNNSqrtDim4(TestSqrt): def setUp(self): super(TestMKLDNNSqrtDim4, self).setUp() self.inputs = { 'X': np.random.uniform(0.1, 1, [2, 4, 3, 5]).astype("float32") } self.outputs = {'Out': np.sqrt(self.inputs['X'])} self.attrs = {"use_mkldnn": True} class TestMKLDNNAbsDim4(TestAbs): def setUp(self): super(TestMKLDNNAbsDim4, self).setUp() x = np.random.uniform(-1, 1, [2, 4, 3, 5]).astype("float32") # The same reason with TestAbs x[np.abs(x) < 0.005] = 0.02 self.inputs = {'X': x} self.outputs = {'Out': np.abs(self.inputs['X'])} self.attrs = {"use_mkldnn": True} if __name__ == "__main__": unittest.main()