test_yolo_box_op.py 4.2 KB
Newer Older
D
dengkaipeng 已提交
1
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
D
dengkaipeng 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division

import unittest
import numpy as np
from op_test import OpTest

from paddle.fluid import core


def sigmoid(x):
    return 1.0 / (1.0 + np.exp(-1.0 * x))


28
def YoloBox(x, img_size, attrs):
D
dengkaipeng 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    n, c, h, w = x.shape
    anchors = attrs['anchors']
    an_num = int(len(anchors) // 2)
    class_num = attrs['class_num']
    conf_thresh = attrs['conf_thresh']
    downsample = attrs['downsample']
    input_size = downsample * h

    x = x.reshape((n, an_num, 5 + class_num, h, w)).transpose((0, 1, 3, 4, 2))

    pred_box = x[:, :, :, :, :4].copy()
    grid_x = np.tile(np.arange(w).reshape((1, w)), (h, 1))
    grid_y = np.tile(np.arange(h).reshape((h, 1)), (1, w))
    pred_box[:, :, :, :, 0] = (grid_x + sigmoid(pred_box[:, :, :, :, 0])) / w
    pred_box[:, :, :, :, 1] = (grid_y + sigmoid(pred_box[:, :, :, :, 1])) / h

    anchors = [(anchors[i], anchors[i + 1]) for i in range(0, len(anchors), 2)]
    anchors_s = np.array(
        [(an_w / input_size, an_h / input_size) for an_w, an_h in anchors])
    anchor_w = anchors_s[:, 0:1].reshape((1, an_num, 1, 1))
    anchor_h = anchors_s[:, 1:2].reshape((1, an_num, 1, 1))
    pred_box[:, :, :, :, 2] = np.exp(pred_box[:, :, :, :, 2]) * anchor_w
    pred_box[:, :, :, :, 3] = np.exp(pred_box[:, :, :, :, 3]) * anchor_h

    pred_conf = sigmoid(x[:, :, :, :, 4:5])
    pred_conf[pred_conf < conf_thresh] = 0.
    pred_score = sigmoid(x[:, :, :, :, 5:]) * pred_conf
    pred_box = pred_box * (pred_conf > 0.).astype('float32')

    pred_box = pred_box.reshape((n, -1, 4))
59 60 61 62 63 64 65
    pred_box[:, :, :2], pred_box[:, :, 2:4] = \
        pred_box[:, :, :2] - pred_box[:, :, 2:4] / 2., \
        pred_box[:, :, :2] + pred_box[:, :, 2:4] / 2.0
    pred_box[:, :, 0] = pred_box[:, :, 0] * img_size[:, 1][:, np.newaxis]
    pred_box[:, :, 1] = pred_box[:, :, 1] * img_size[:, 0][:, np.newaxis]
    pred_box[:, :, 2] = pred_box[:, :, 2] * img_size[:, 1][:, np.newaxis]
    pred_box[:, :, 3] = pred_box[:, :, 3] * img_size[:, 0][:, np.newaxis]
D
dengkaipeng 已提交
66

D
dengkaipeng 已提交
67 68 69 70 71 72 73 74
    for i in range(len(pred_box)):
        pred_box[i, :, 0] = np.clip(pred_box[i, :, 0], 0, np.inf)
        pred_box[i, :, 1] = np.clip(pred_box[i, :, 1], 0, np.inf)
        pred_box[i, :, 2] = np.clip(pred_box[i, :, 2], -np.inf,
                                    img_size[i, 1] - 1)
        pred_box[i, :, 3] = np.clip(pred_box[i, :, 3], -np.inf,
                                    img_size[i, 0] - 1)

D
dengkaipeng 已提交
75 76 77 78 79 80 81 82
    return pred_box, pred_score.reshape((n, -1, class_num))


class TestYoloBoxOp(OpTest):
    def setUp(self):
        self.initTestCase()
        self.op_type = 'yolo_box'
        x = np.random.random(self.x_shape).astype('float32')
83
        img_size = np.random.randint(10, 20, self.imgsize_shape).astype('int32')
D
dengkaipeng 已提交
84 85 86 87 88 89 90 91

        self.attrs = {
            "anchors": self.anchors,
            "class_num": self.class_num,
            "conf_thresh": self.conf_thresh,
            "downsample": self.downsample,
        }

92 93 94 95 96
        self.inputs = {
            'X': x,
            'ImgSize': img_size,
        }
        boxes, scores = YoloBox(x, img_size, self.attrs)
D
dengkaipeng 已提交
97 98 99 100 101 102
        self.outputs = {
            "Boxes": boxes,
            "Scores": scores,
        }

    def test_check_output(self):
D
dengkaipeng 已提交
103
        self.check_output()
D
dengkaipeng 已提交
104 105 106 107

    def initTestCase(self):
        self.anchors = [10, 13, 16, 30, 33, 23]
        an_num = int(len(self.anchors) // 2)
108
        self.batch_size = 32
D
dengkaipeng 已提交
109 110 111
        self.class_num = 2
        self.conf_thresh = 0.5
        self.downsample = 32
112
        self.x_shape = (self.batch_size, an_num * (5 + self.class_num), 13, 13)
113
        self.imgsize_shape = (self.batch_size, 2)
D
dengkaipeng 已提交
114 115 116 117


if __name__ == "__main__":
    unittest.main()