# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import division import unittest import numpy as np from op_test import OpTest from paddle.fluid import core def sigmoid(x): return 1.0 / (1.0 + np.exp(-1.0 * x)) def YoloBox(x, img_size, attrs): n, c, h, w = x.shape anchors = attrs['anchors'] an_num = int(len(anchors) // 2) class_num = attrs['class_num'] conf_thresh = attrs['conf_thresh'] downsample = attrs['downsample'] input_size = downsample * h x = x.reshape((n, an_num, 5 + class_num, h, w)).transpose((0, 1, 3, 4, 2)) pred_box = x[:, :, :, :, :4].copy() grid_x = np.tile(np.arange(w).reshape((1, w)), (h, 1)) grid_y = np.tile(np.arange(h).reshape((h, 1)), (1, w)) pred_box[:, :, :, :, 0] = (grid_x + sigmoid(pred_box[:, :, :, :, 0])) / w pred_box[:, :, :, :, 1] = (grid_y + sigmoid(pred_box[:, :, :, :, 1])) / h anchors = [(anchors[i], anchors[i + 1]) for i in range(0, len(anchors), 2)] anchors_s = np.array( [(an_w / input_size, an_h / input_size) for an_w, an_h in anchors]) anchor_w = anchors_s[:, 0:1].reshape((1, an_num, 1, 1)) anchor_h = anchors_s[:, 1:2].reshape((1, an_num, 1, 1)) pred_box[:, :, :, :, 2] = np.exp(pred_box[:, :, :, :, 2]) * anchor_w pred_box[:, :, :, :, 3] = np.exp(pred_box[:, :, :, :, 3]) * anchor_h pred_conf = sigmoid(x[:, :, :, :, 4:5]) pred_conf[pred_conf < conf_thresh] = 0. pred_score = sigmoid(x[:, :, :, :, 5:]) * pred_conf pred_box = pred_box * (pred_conf > 0.).astype('float32') pred_box = pred_box.reshape((n, -1, 4)) pred_box[:, :, :2], pred_box[:, :, 2:4] = \ pred_box[:, :, :2] - pred_box[:, :, 2:4] / 2., \ pred_box[:, :, :2] + pred_box[:, :, 2:4] / 2.0 pred_box[:, :, 0] = pred_box[:, :, 0] * img_size[:, 1][:, np.newaxis] pred_box[:, :, 1] = pred_box[:, :, 1] * img_size[:, 0][:, np.newaxis] pred_box[:, :, 2] = pred_box[:, :, 2] * img_size[:, 1][:, np.newaxis] pred_box[:, :, 3] = pred_box[:, :, 3] * img_size[:, 0][:, np.newaxis] for i in range(len(pred_box)): pred_box[i, :, 0] = np.clip(pred_box[i, :, 0], 0, np.inf) pred_box[i, :, 1] = np.clip(pred_box[i, :, 1], 0, np.inf) pred_box[i, :, 2] = np.clip(pred_box[i, :, 2], -np.inf, img_size[i, 1] - 1) pred_box[i, :, 3] = np.clip(pred_box[i, :, 3], -np.inf, img_size[i, 0] - 1) return pred_box, pred_score.reshape((n, -1, class_num)) class TestYoloBoxOp(OpTest): def setUp(self): self.initTestCase() self.op_type = 'yolo_box' x = np.random.random(self.x_shape).astype('float32') img_size = np.random.randint(10, 20, self.imgsize_shape).astype('int32') self.attrs = { "anchors": self.anchors, "class_num": self.class_num, "conf_thresh": self.conf_thresh, "downsample": self.downsample, } self.inputs = { 'X': x, 'ImgSize': img_size, } boxes, scores = YoloBox(x, img_size, self.attrs) self.outputs = { "Boxes": boxes, "Scores": scores, } def test_check_output(self): self.check_output() def initTestCase(self): self.anchors = [10, 13, 16, 30, 33, 23] an_num = int(len(self.anchors) // 2) self.batch_size = 32 self.class_num = 2 self.conf_thresh = 0.5 self.downsample = 32 self.x_shape = (self.batch_size, an_num * (5 + self.class_num), 13, 13) self.imgsize_shape = (self.batch_size, 2) if __name__ == "__main__": unittest.main()