conv_cudnn_op.cu.cc 16.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
武毅 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
武毅 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
武毅 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
武毅 已提交
14

Y
Yi Wang 已提交
15 16 17 18 19 20
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memory.h"
#include "paddle/fluid/operators/conv_op.h"
#include "paddle/fluid/platform/assert.h"
#include "paddle/fluid/platform/cudnn_helper.h"
K
Kexin Zhao 已提交
21
#include "paddle/fluid/platform/float16.h"
武毅 已提交
22

Y
Yu Yang 已提交
23
DEFINE_bool(cudnn_deterministic, false,
C
chengduoZH 已提交
24 25
            "Whether allow using an autotuning algorithm for convolution "
            "operator. The autotuning algorithm may be non-deterministic. If "
Y
Yu Yang 已提交
26
            "true, the algorithm is deterministic.");
C
chengduoZH 已提交
27

武毅 已提交
28 29 30 31 32 33 34 35
namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor;
using DataLayout = platform::DataLayout;
K
update  
Kexin Zhao 已提交
36 37
template <typename T>
using ScalingParamType = typename platform::CudnnDataType<T>::ScalingParamType;
武毅 已提交
38

Q
qiaolongfei 已提交
39 40
static constexpr size_t kCONV_CUDNN_WORKSPACE_LIMIT_BYTES =
    static_cast<size_t>(1024) * 1024 * 1024;
武毅 已提交
41 42

template <typename T>
43
class CUDNNConvOpKernel : public framework::OpKernel<T> {
武毅 已提交
44 45
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
D
dzhwinter 已提交
46
    VLOG(3) << "inside cudnn";
武毅 已提交
47
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
D
dzhwinter 已提交
48
                   "It must use CUDAPlace.");
武毅 已提交
49 50 51 52 53 54 55 56
    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* output = ctx.Output<Tensor>("Output");

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
Q
qiaolongfei 已提交
57 58
    int64_t user_workspace_size =
        static_cast<size_t>(ctx.Attr<int>("workspace_size_MB"));
武毅 已提交
59 60 61 62

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    T* output_data = output->mutable_data<T>(ctx.GetPlace());
D
dzhwinter 已提交
63
    VLOG(3) << "get all inputs";
武毅 已提交
64 65 66 67 68 69
    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_desc;
    ScopedFilterDescriptor filter_desc;
    ScopedConvolutionDescriptor conv_desc;
    DataLayout layout = DataLayout::kNCHW;
武毅 已提交
70 71 72 73 74 75
    if (input->dims().size() == 5) {
      layout = DataLayout::kNCDHW;
    }

    cudnnConvolutionDescriptor_t cudnn_conv_desc =
        conv_desc.descriptor<T>(paddings, strides, dilations);
D
dzhwinter 已提交
76
    VLOG(3) << "create tensor descriptor";
武毅 已提交
77
#if CUDNN_VERSION_MIN(7, 0, 1)
武毅 已提交
78 79 80
    // cudnn 7 can support groups, no need to do it mannually
    // FIXME(typhoonzero): find a better way to disable groups
    // rather than setting it to 1.
W
Wu Yi 已提交
81
    CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionGroupCount(
武毅 已提交
82 83 84
        cudnn_conv_desc, groups));
    groups = 1;
#endif
D
dzhwinter 已提交
85
    VLOG(3) << "before create tensor descriptor";
C
chengduoZH 已提交
86 87 88 89 90 91
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
        layout, framework::vectorize2int(input->dims()), groups);
    cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
        layout, framework::vectorize2int(output->dims()), groups);
    cudnnFilterDescriptor_t cudnn_filter_desc = filter_desc.descriptor<T>(
        layout, framework::vectorize2int(filter->dims()), groups);
武毅 已提交
92 93

    int input_channels = input->dims()[1];
武毅 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
    int input_height, input_width, input_depth;
    if (input->dims().size() == 5) {
      input_depth = input->dims()[2];
      input_height = input->dims()[3];
      input_width = input->dims()[4];
    } else {  // dim size is enforced in InferShape
      input_depth = 1;
      input_height = input->dims()[2];
      input_width = input->dims()[3];
    }
    int output_channels = filter->dims()[0];
    int output_height, output_width, output_depth;
    if (output->dims().size() == 5) {
      output_depth = output->dims()[2];
      output_height = output->dims()[3];
      output_width = output->dims()[4];
    } else {
      output_depth = 1;
      output_height = output->dims()[2];
      output_width = output->dims()[3];
    }
D
dzhwinter 已提交
115
    VLOG(3) << "after create tensor descriptor";
武毅 已提交
116 117
    int group_offset_in =
        input_channels / groups * input_height * input_width * input_depth;
武毅 已提交
118
    int group_offset_out =
武毅 已提交
119
        output_channels / groups * output_height * output_width * output_depth;
武毅 已提交
120 121 122 123 124 125 126 127 128 129
    int group_offset_filter = filter->numel() / groups;
    // ------------------- cudnn conv workspace ---------------------
    void* cudnn_workspace = nullptr;
    size_t workspace_size_in_bytes;  // final workspace to allocate.
    size_t workspace_size_limit = kCONV_CUDNN_WORKSPACE_LIMIT_BYTES;
    if (user_workspace_size > 0) {
      workspace_size_limit = user_workspace_size * 1024 * 1024;
    }
    // ------------------- cudnn conv algorithm ---------------------
    cudnnConvolutionFwdAlgo_t algo;
Q
QI JUN 已提交
130 131
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto handle = dev_ctx.cudnn_handle();
132

D
dzhwinter 已提交
133
    VLOG(3) << "set cudnn algorithm";
134 135 136 137 138 139 140 141 142 143 144 145 146 147
    CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionForwardAlgorithm(
        handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
        cudnn_output_desc, CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
        workspace_size_limit, &algo));

#if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1)
    // Tensor core is supported since the volta GPU and
    // is only enabled when input and filter data are float16
    if (dev_ctx.GetComputeCapability() >= 70 &&
        std::type_index(typeid(T)) ==
            std::type_index(typeid(platform::float16))) {
      CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
          cudnn_conv_desc, CUDNN_TENSOR_OP_MATH));
      // Currently tensor core is only enabled using this algo
K
Kexin Zhao 已提交
148 149
      algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM;
    } else {
150 151
      CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
          cudnn_conv_desc, CUDNN_DEFAULT_MATH));
K
Kexin Zhao 已提交
152
    }
153
#endif
D
dzhwinter 已提交
154
    VLOG(3) << "before get workspace";
武毅 已提交
155
    // get workspace size able to allocate
W
Wu Yi 已提交
156
    CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
武毅 已提交
157 158
        handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
        cudnn_output_desc, algo, &workspace_size_in_bytes));
K
Kexin Zhao 已提交
159 160 161 162
    // It is possible for float16 on Volta GPU to allocate more memory than
    // the limit because the algo is overrided to use tensor core.
    PADDLE_ENFORCE_LE(workspace_size_in_bytes, workspace_size_limit,
                      "workspace_size to be allocated exceeds the limit");
D
dzhwinter 已提交
163
    VLOG(3) << "after get workspace";
武毅 已提交
164
    // Allocate on GPU memory
D
dzhwinter 已提交
165
    platform::CUDAPlace gpu = boost::get<platform::CUDAPlace>(ctx.GetPlace());
D
dzhwinter 已提交
166
    workspace_size_in_bytes = 1024;
武毅 已提交
167
    cudnn_workspace = paddle::memory::Alloc(gpu, workspace_size_in_bytes);
D
dzhwinter 已提交
168
    VLOG(3) << "allocate memory";
武毅 已提交
169
    // ------------------- cudnn conv forward ---------------------
K
update  
Kexin Zhao 已提交
170
    ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
武毅 已提交
171
    for (int i = 0; i < groups; i++) {
W
Wu Yi 已提交
172
      CUDNN_ENFORCE(platform::dynload::cudnnConvolutionForward(
武毅 已提交
173 174 175 176 177
          handle, &alpha, cudnn_input_desc, input_data + i * group_offset_in,
          cudnn_filter_desc, filter_data + i * group_offset_filter,
          cudnn_conv_desc, algo, cudnn_workspace, workspace_size_in_bytes,
          &beta, cudnn_output_desc, output_data + i * group_offset_out));
    }
D
dzhwinter 已提交
178
    VLOG(3) << "cudnn forward";
武毅 已提交
179 180
    // Release the cudnn workspace
    paddle::memory::Free(gpu, cudnn_workspace);
D
dzhwinter 已提交
181
    VLOG(3) << "cudnn pass";
武毅 已提交
182 183 184 185
  }
};

template <typename T>
186
class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
武毅 已提交
187 188 189
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
D
dzhwinter 已提交
190
                   "It must use CUDAPlace.");
武毅 已提交
191 192 193 194 195 196 197 198 199 200 201 202 203 204
    auto input = ctx.Input<Tensor>("Input");
    auto filter = ctx.Input<Tensor>("Filter");
    auto output_grad = ctx.Input<Tensor>(framework::GradVarName("Output"));
    auto input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    auto filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

    const T* input_data = input->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    const T* filter_data = filter->data<T>();

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
Q
qiaolongfei 已提交
205 206
    int64_t user_workspace_size =
        static_cast<size_t>(ctx.Attr<int>("workspace_size_MB"));
武毅 已提交
207 208 209 210 211 212 213 214 215

    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_grad_desc;

    ScopedFilterDescriptor filter_desc;
    ScopedFilterDescriptor filter_grad_desc;
    ScopedConvolutionDescriptor conv_desc;
    DataLayout layout = DataLayout::kNCHW;
武毅 已提交
216 217 218 219 220 221 222
    if (input->dims().size() == 5) {
      layout = DataLayout::kNCDHW;
    }

    cudnnConvolutionDescriptor_t cudnn_conv_desc =
        conv_desc.descriptor<T>(paddings, strides, dilations);

武毅 已提交
223
#if CUDNN_VERSION_MIN(7, 0, 1)
武毅 已提交
224 225 226
    // cudnn 7 can support groups, no need to do it mannually
    // FIXME(typhoonzero): find a better way to disable groups
    // rather than setting it to 1.
W
Wu Yi 已提交
227
    CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionGroupCount(
武毅 已提交
228 229 230
        cudnn_conv_desc, groups));
    groups = 1;
#endif
武毅 已提交
231

C
chengduoZH 已提交
232 233
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
        layout, framework::vectorize2int(input->dims()), groups);
武毅 已提交
234
    cudnnTensorDescriptor_t cudnn_output_grad_desc =
C
chengduoZH 已提交
235 236 237 238
        output_grad_desc.descriptor<T>(
            layout, framework::vectorize2int(output_grad->dims()), groups);
    cudnnFilterDescriptor_t cudnn_filter_desc = filter_desc.descriptor<T>(
        layout, framework::vectorize2int(filter->dims()), groups);
武毅 已提交
239 240

    int input_channels = input->dims()[1];
武毅 已提交
241 242 243 244 245 246 247 248 249 250 251
    int input_height, input_width, input_depth;
    if (input->dims().size() == 5) {
      input_depth = input->dims()[2];
      input_height = input->dims()[3];
      input_width = input->dims()[4];
    } else {  // dim size is enforced in InferShape
      input_depth = 1;
      input_height = input->dims()[2];
      input_width = input->dims()[3];
    }

武毅 已提交
252
    int output_grad_channels = filter->dims()[0];
武毅 已提交
253 254 255 256 257 258 259 260 261 262
    int output_grad_height, output_grad_width, output_grad_depth;
    if (input->dims().size() == 5) {
      output_grad_depth = output_grad->dims()[2];
      output_grad_height = output_grad->dims()[3];
      output_grad_width = output_grad->dims()[4];
    } else {
      output_grad_depth = 1;
      output_grad_height = output_grad->dims()[2];
      output_grad_width = output_grad->dims()[3];
    }
武毅 已提交
263

武毅 已提交
264 265 266 267
    int group_offset_in =
        input_channels / groups * input_height * input_width * input_depth;
    int group_offset_out = output_grad_channels / groups * output_grad_height *
                           output_grad_width * output_grad_depth;
武毅 已提交
268 269 270 271 272 273 274 275 276 277
    int group_offset_filter = filter->numel() / groups;
    // ------------------- cudnn backward algorithm ---------------------
    cudnnConvolutionBwdDataAlgo_t data_algo;
    cudnnConvolutionBwdFilterAlgo_t filter_algo;
    size_t workspace_size_in_bytes = 0, tmp_size = 0;
    size_t workspace_size_limit = kCONV_CUDNN_WORKSPACE_LIMIT_BYTES;
    if (user_workspace_size > 0) {
      workspace_size_limit = user_workspace_size * 1024 * 1024;
    }

Q
QI JUN 已提交
278 279
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto handle = dev_ctx.cudnn_handle();
武毅 已提交
280
    if (input_grad) {
Y
Yu Yang 已提交
281
      if (!FLAGS_cudnn_deterministic) {
W
Wu Yi 已提交
282
        CUDNN_ENFORCE(
C
chengduoZH 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
            platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
                handle, cudnn_filter_desc,
                // dyDesc: Handle to the previously initialized input
                // differential
                // tensor descriptor.
                cudnn_output_grad_desc, cudnn_conv_desc,
                // dxDesc: Handle to the previously initialized output tensor
                // descriptor.
                cudnn_input_desc,
                CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
                workspace_size_limit, &data_algo));
      } else {
        data_algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1;
      }

W
Wu Yi 已提交
298
      CUDNN_ENFORCE(
武毅 已提交
299 300
          platform::dynload::cudnnGetConvolutionBackwardDataWorkspaceSize(
              handle, cudnn_filter_desc, cudnn_output_grad_desc,
武毅 已提交
301
              cudnn_conv_desc, cudnn_input_desc, data_algo, &tmp_size));
武毅 已提交
302 303 304 305
      workspace_size_in_bytes = std::max(workspace_size_in_bytes, tmp_size);
    }

    if (filter_grad) {
Y
Yu Yang 已提交
306
      if (!FLAGS_cudnn_deterministic) {
W
Wu Yi 已提交
307
        CUDNN_ENFORCE(
C
chengduoZH 已提交
308 309 310 311 312 313 314 315
            platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
                handle, cudnn_input_desc, cudnn_output_grad_desc,
                cudnn_conv_desc, cudnn_filter_desc,
                CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
                workspace_size_limit, &filter_algo));
      } else {
        filter_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1;
      }
武毅 已提交
316

W
Wu Yi 已提交
317
      CUDNN_ENFORCE(
武毅 已提交
318 319 320 321 322 323 324 325
          platform::dynload::cudnnGetConvolutionBackwardFilterWorkspaceSize(
              handle, cudnn_input_desc, cudnn_output_grad_desc, cudnn_conv_desc,
              cudnn_filter_desc, filter_algo, &tmp_size));
      workspace_size_in_bytes = std::max(workspace_size_in_bytes, tmp_size);
    }
    // ------------------- cudnn conv workspace ---------------------
    // Already on GPU
    void* cudnn_workspace = nullptr;
D
dzhwinter 已提交
326
    platform::CUDAPlace gpu = boost::get<platform::CUDAPlace>(ctx.GetPlace());
D
dzhwinter 已提交
327
    workspace_size_in_bytes = 1024;
武毅 已提交
328 329
    cudnn_workspace = paddle::memory::Alloc(gpu, workspace_size_in_bytes);
    // ------------------- cudnn conv backward data ---------------------
K
update  
Kexin Zhao 已提交
330
    ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
武毅 已提交
331 332
    if (input_grad) {
      T* input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
C
chengduoZH 已提交
333 334
      // Because beta is zero, it is unnecessary to reset input_grad.

武毅 已提交
335
      for (int i = 0; i < groups; i++) {
W
Wu Yi 已提交
336
        CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardData(
武毅 已提交
337 338 339
            handle, &alpha, cudnn_filter_desc,
            filter_data + i * group_offset_filter, cudnn_output_grad_desc,
            output_grad_data + i * group_offset_out, cudnn_conv_desc, data_algo,
武毅 已提交
340 341
            cudnn_workspace, workspace_size_in_bytes, &beta, cudnn_input_desc,
            input_grad_data + i * group_offset_in));
武毅 已提交
342 343 344 345 346
      }
    }
    // ------------------- cudnn conv backward filter ---------------------
    if (filter_grad) {
      T* filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace());
C
chengduoZH 已提交
347
      // Because beta is zero, it is unnecessary to reset filter_grad.
武毅 已提交
348
      for (int i = 0; i < groups; i++) {
W
Wu Yi 已提交
349
        CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardFilter(
武毅 已提交
350 351 352
            handle, &alpha, cudnn_input_desc, input_data + i * group_offset_in,
            cudnn_output_grad_desc, output_grad_data + i * group_offset_out,
            cudnn_conv_desc, filter_algo, cudnn_workspace,
武毅 已提交
353
            workspace_size_in_bytes, &beta, cudnn_filter_desc,
武毅 已提交
354 355 356 357 358 359 360 361 362 363 364
            filter_grad_data + i * group_offset_filter));
      }
    }
    // Release the cudnn workspace
    paddle::memory::Free(gpu, cudnn_workspace);
  }
};

}  // namespace operators
}  // namespace paddle

K
Kexin Zhao 已提交
365 366
namespace plat = paddle::platform;
REGISTER_OP_KERNEL(conv2d, CUDNN, plat::CUDAPlace,
367
                   paddle::operators::CUDNNConvOpKernel<float>,
K
Kexin Zhao 已提交
368
                   paddle::operators::CUDNNConvOpKernel<double>,
K
Kexin Zhao 已提交
369
                   paddle::operators::CUDNNConvOpKernel<plat::float16>);
K
Kexin Zhao 已提交
370
REGISTER_OP_KERNEL(conv2d_grad, CUDNN, plat::CUDAPlace,
371
                   paddle::operators::CUDNNConvGradOpKernel<float>,
372
                   paddle::operators::CUDNNConvGradOpKernel<double>);
373

K
Kexin Zhao 已提交
374
REGISTER_OP_KERNEL(conv3d, CUDNN, plat::CUDAPlace,
375
                   paddle::operators::CUDNNConvOpKernel<float>,
K
Kexin Zhao 已提交
376 377
                   paddle::operators::CUDNNConvOpKernel<double>,
                   paddle::operators::CUDNNConvOpKernel<plat::float16>);
K
Kexin Zhao 已提交
378
REGISTER_OP_KERNEL(conv3d_grad, CUDNN, plat::CUDAPlace,
379
                   paddle::operators::CUDNNConvGradOpKernel<float>,
380
                   paddle::operators::CUDNNConvGradOpKernel<double>);