/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/memory/memory.h" #include "paddle/fluid/operators/conv_op.h" #include "paddle/fluid/platform/assert.h" #include "paddle/fluid/platform/cudnn_helper.h" #include "paddle/fluid/platform/float16.h" DEFINE_bool(cudnn_deterministic, false, "Whether allow using an autotuning algorithm for convolution " "operator. The autotuning algorithm may be non-deterministic. If " "true, the algorithm is deterministic."); namespace paddle { namespace operators { using Tensor = framework::Tensor; using ScopedTensorDescriptor = platform::ScopedTensorDescriptor; using ScopedFilterDescriptor = platform::ScopedFilterDescriptor; using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor; using DataLayout = platform::DataLayout; template using ScalingParamType = typename platform::CudnnDataType::ScalingParamType; static constexpr size_t kCONV_CUDNN_WORKSPACE_LIMIT_BYTES = static_cast(1024) * 1024 * 1024; template class CUDNNConvOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { VLOG(3) << "inside cudnn"; PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), "It must use CUDAPlace."); auto* input = ctx.Input("Input"); auto* filter = ctx.Input("Filter"); auto* output = ctx.Output("Output"); std::vector strides = ctx.Attr>("strides"); std::vector paddings = ctx.Attr>("paddings"); std::vector dilations = ctx.Attr>("dilations"); int groups = ctx.Attr("groups"); int64_t user_workspace_size = static_cast(ctx.Attr("workspace_size_MB")); const T* input_data = input->data(); const T* filter_data = filter->data(); T* output_data = output->mutable_data(ctx.GetPlace()); VLOG(3) << "get all inputs"; // ------------------- cudnn descriptors --------------------- ScopedTensorDescriptor input_desc; ScopedTensorDescriptor output_desc; ScopedFilterDescriptor filter_desc; ScopedConvolutionDescriptor conv_desc; DataLayout layout = DataLayout::kNCHW; if (input->dims().size() == 5) { layout = DataLayout::kNCDHW; } cudnnConvolutionDescriptor_t cudnn_conv_desc = conv_desc.descriptor(paddings, strides, dilations); VLOG(3) << "create tensor descriptor"; #if CUDNN_VERSION_MIN(7, 0, 1) // cudnn 7 can support groups, no need to do it mannually // FIXME(typhoonzero): find a better way to disable groups // rather than setting it to 1. CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionGroupCount( cudnn_conv_desc, groups)); groups = 1; #endif VLOG(3) << "before create tensor descriptor"; cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor( layout, framework::vectorize2int(input->dims()), groups); cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor( layout, framework::vectorize2int(output->dims()), groups); cudnnFilterDescriptor_t cudnn_filter_desc = filter_desc.descriptor( layout, framework::vectorize2int(filter->dims()), groups); int input_channels = input->dims()[1]; int input_height, input_width, input_depth; if (input->dims().size() == 5) { input_depth = input->dims()[2]; input_height = input->dims()[3]; input_width = input->dims()[4]; } else { // dim size is enforced in InferShape input_depth = 1; input_height = input->dims()[2]; input_width = input->dims()[3]; } int output_channels = filter->dims()[0]; int output_height, output_width, output_depth; if (output->dims().size() == 5) { output_depth = output->dims()[2]; output_height = output->dims()[3]; output_width = output->dims()[4]; } else { output_depth = 1; output_height = output->dims()[2]; output_width = output->dims()[3]; } VLOG(3) << "after create tensor descriptor"; int group_offset_in = input_channels / groups * input_height * input_width * input_depth; int group_offset_out = output_channels / groups * output_height * output_width * output_depth; int group_offset_filter = filter->numel() / groups; // ------------------- cudnn conv workspace --------------------- void* cudnn_workspace = nullptr; size_t workspace_size_in_bytes; // final workspace to allocate. size_t workspace_size_limit = kCONV_CUDNN_WORKSPACE_LIMIT_BYTES; if (user_workspace_size > 0) { workspace_size_limit = user_workspace_size * 1024 * 1024; } // ------------------- cudnn conv algorithm --------------------- cudnnConvolutionFwdAlgo_t algo; auto& dev_ctx = ctx.template device_context(); auto handle = dev_ctx.cudnn_handle(); VLOG(3) << "set cudnn algorithm"; CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionForwardAlgorithm( handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc, cudnn_output_desc, CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT, workspace_size_limit, &algo)); #if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1) // Tensor core is supported since the volta GPU and // is only enabled when input and filter data are float16 if (dev_ctx.GetComputeCapability() >= 70 && std::type_index(typeid(T)) == std::type_index(typeid(platform::float16))) { CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType( cudnn_conv_desc, CUDNN_TENSOR_OP_MATH)); // Currently tensor core is only enabled using this algo algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM; } else { CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType( cudnn_conv_desc, CUDNN_DEFAULT_MATH)); } #endif VLOG(3) << "before get workspace"; // get workspace size able to allocate CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionForwardWorkspaceSize( handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc, cudnn_output_desc, algo, &workspace_size_in_bytes)); // It is possible for float16 on Volta GPU to allocate more memory than // the limit because the algo is overrided to use tensor core. PADDLE_ENFORCE_LE(workspace_size_in_bytes, workspace_size_limit, "workspace_size to be allocated exceeds the limit"); VLOG(3) << "after get workspace"; // Allocate on GPU memory platform::CUDAPlace gpu = boost::get(ctx.GetPlace()); workspace_size_in_bytes = 1024; cudnn_workspace = paddle::memory::Alloc(gpu, workspace_size_in_bytes); VLOG(3) << "allocate memory"; // ------------------- cudnn conv forward --------------------- ScalingParamType alpha = 1.0f, beta = 0.0f; for (int i = 0; i < groups; i++) { CUDNN_ENFORCE(platform::dynload::cudnnConvolutionForward( handle, &alpha, cudnn_input_desc, input_data + i * group_offset_in, cudnn_filter_desc, filter_data + i * group_offset_filter, cudnn_conv_desc, algo, cudnn_workspace, workspace_size_in_bytes, &beta, cudnn_output_desc, output_data + i * group_offset_out)); } VLOG(3) << "cudnn forward"; // Release the cudnn workspace paddle::memory::Free(gpu, cudnn_workspace); VLOG(3) << "cudnn pass"; } }; template class CUDNNConvGradOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), "It must use CUDAPlace."); auto input = ctx.Input("Input"); auto filter = ctx.Input("Filter"); auto output_grad = ctx.Input(framework::GradVarName("Output")); auto input_grad = ctx.Output(framework::GradVarName("Input")); auto filter_grad = ctx.Output(framework::GradVarName("Filter")); const T* input_data = input->data(); const T* output_grad_data = output_grad->data(); const T* filter_data = filter->data(); std::vector strides = ctx.Attr>("strides"); std::vector paddings = ctx.Attr>("paddings"); std::vector dilations = ctx.Attr>("dilations"); int groups = ctx.Attr("groups"); int64_t user_workspace_size = static_cast(ctx.Attr("workspace_size_MB")); // ------------------- cudnn descriptors --------------------- ScopedTensorDescriptor input_desc; ScopedTensorDescriptor output_grad_desc; ScopedFilterDescriptor filter_desc; ScopedFilterDescriptor filter_grad_desc; ScopedConvolutionDescriptor conv_desc; DataLayout layout = DataLayout::kNCHW; if (input->dims().size() == 5) { layout = DataLayout::kNCDHW; } cudnnConvolutionDescriptor_t cudnn_conv_desc = conv_desc.descriptor(paddings, strides, dilations); #if CUDNN_VERSION_MIN(7, 0, 1) // cudnn 7 can support groups, no need to do it mannually // FIXME(typhoonzero): find a better way to disable groups // rather than setting it to 1. CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionGroupCount( cudnn_conv_desc, groups)); groups = 1; #endif cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor( layout, framework::vectorize2int(input->dims()), groups); cudnnTensorDescriptor_t cudnn_output_grad_desc = output_grad_desc.descriptor( layout, framework::vectorize2int(output_grad->dims()), groups); cudnnFilterDescriptor_t cudnn_filter_desc = filter_desc.descriptor( layout, framework::vectorize2int(filter->dims()), groups); int input_channels = input->dims()[1]; int input_height, input_width, input_depth; if (input->dims().size() == 5) { input_depth = input->dims()[2]; input_height = input->dims()[3]; input_width = input->dims()[4]; } else { // dim size is enforced in InferShape input_depth = 1; input_height = input->dims()[2]; input_width = input->dims()[3]; } int output_grad_channels = filter->dims()[0]; int output_grad_height, output_grad_width, output_grad_depth; if (input->dims().size() == 5) { output_grad_depth = output_grad->dims()[2]; output_grad_height = output_grad->dims()[3]; output_grad_width = output_grad->dims()[4]; } else { output_grad_depth = 1; output_grad_height = output_grad->dims()[2]; output_grad_width = output_grad->dims()[3]; } int group_offset_in = input_channels / groups * input_height * input_width * input_depth; int group_offset_out = output_grad_channels / groups * output_grad_height * output_grad_width * output_grad_depth; int group_offset_filter = filter->numel() / groups; // ------------------- cudnn backward algorithm --------------------- cudnnConvolutionBwdDataAlgo_t data_algo; cudnnConvolutionBwdFilterAlgo_t filter_algo; size_t workspace_size_in_bytes = 0, tmp_size = 0; size_t workspace_size_limit = kCONV_CUDNN_WORKSPACE_LIMIT_BYTES; if (user_workspace_size > 0) { workspace_size_limit = user_workspace_size * 1024 * 1024; } auto& dev_ctx = ctx.template device_context(); auto handle = dev_ctx.cudnn_handle(); if (input_grad) { if (!FLAGS_cudnn_deterministic) { CUDNN_ENFORCE( platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm( handle, cudnn_filter_desc, // dyDesc: Handle to the previously initialized input // differential // tensor descriptor. cudnn_output_grad_desc, cudnn_conv_desc, // dxDesc: Handle to the previously initialized output tensor // descriptor. cudnn_input_desc, CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT, workspace_size_limit, &data_algo)); } else { data_algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1; } CUDNN_ENFORCE( platform::dynload::cudnnGetConvolutionBackwardDataWorkspaceSize( handle, cudnn_filter_desc, cudnn_output_grad_desc, cudnn_conv_desc, cudnn_input_desc, data_algo, &tmp_size)); workspace_size_in_bytes = std::max(workspace_size_in_bytes, tmp_size); } if (filter_grad) { if (!FLAGS_cudnn_deterministic) { CUDNN_ENFORCE( platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm( handle, cudnn_input_desc, cudnn_output_grad_desc, cudnn_conv_desc, cudnn_filter_desc, CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT, workspace_size_limit, &filter_algo)); } else { filter_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1; } CUDNN_ENFORCE( platform::dynload::cudnnGetConvolutionBackwardFilterWorkspaceSize( handle, cudnn_input_desc, cudnn_output_grad_desc, cudnn_conv_desc, cudnn_filter_desc, filter_algo, &tmp_size)); workspace_size_in_bytes = std::max(workspace_size_in_bytes, tmp_size); } // ------------------- cudnn conv workspace --------------------- // Already on GPU void* cudnn_workspace = nullptr; platform::CUDAPlace gpu = boost::get(ctx.GetPlace()); workspace_size_in_bytes = 1024; cudnn_workspace = paddle::memory::Alloc(gpu, workspace_size_in_bytes); // ------------------- cudnn conv backward data --------------------- ScalingParamType alpha = 1.0f, beta = 0.0f; if (input_grad) { T* input_grad_data = input_grad->mutable_data(ctx.GetPlace()); // Because beta is zero, it is unnecessary to reset input_grad. for (int i = 0; i < groups; i++) { CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardData( handle, &alpha, cudnn_filter_desc, filter_data + i * group_offset_filter, cudnn_output_grad_desc, output_grad_data + i * group_offset_out, cudnn_conv_desc, data_algo, cudnn_workspace, workspace_size_in_bytes, &beta, cudnn_input_desc, input_grad_data + i * group_offset_in)); } } // ------------------- cudnn conv backward filter --------------------- if (filter_grad) { T* filter_grad_data = filter_grad->mutable_data(ctx.GetPlace()); // Because beta is zero, it is unnecessary to reset filter_grad. for (int i = 0; i < groups; i++) { CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardFilter( handle, &alpha, cudnn_input_desc, input_data + i * group_offset_in, cudnn_output_grad_desc, output_grad_data + i * group_offset_out, cudnn_conv_desc, filter_algo, cudnn_workspace, workspace_size_in_bytes, &beta, cudnn_filter_desc, filter_grad_data + i * group_offset_filter)); } } // Release the cudnn workspace paddle::memory::Free(gpu, cudnn_workspace); } }; } // namespace operators } // namespace paddle namespace plat = paddle::platform; REGISTER_OP_KERNEL(conv2d, CUDNN, plat::CUDAPlace, paddle::operators::CUDNNConvOpKernel, paddle::operators::CUDNNConvOpKernel, paddle::operators::CUDNNConvOpKernel); REGISTER_OP_KERNEL(conv2d_grad, CUDNN, plat::CUDAPlace, paddle::operators::CUDNNConvGradOpKernel, paddle::operators::CUDNNConvGradOpKernel); REGISTER_OP_KERNEL(conv3d, CUDNN, plat::CUDAPlace, paddle::operators::CUDNNConvOpKernel, paddle::operators::CUDNNConvOpKernel, paddle::operators::CUDNNConvOpKernel); REGISTER_OP_KERNEL(conv3d_grad, CUDNN, plat::CUDAPlace, paddle::operators::CUDNNConvGradOpKernel, paddle::operators::CUDNNConvGradOpKernel);