reduce_op_handle.cc 5.5 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/details/reduce_op_handle.h"
#include "paddle/fluid/framework/details/gather_op_handle.h"
#include "paddle/fluid/framework/details/reduce_and_gather.h"
#include "paddle/fluid/platform/nccl_helper.h"

namespace paddle {
namespace framework {
namespace details {

std::vector<VarHandle *> GetValidVarHandle(
    const std::vector<VarHandleBase *> &inputs) {
  std::vector<VarHandle *> in_var_handles;
  for (auto *in : inputs) {
    auto *in_handle = dynamic_cast<VarHandle *>(in);
    if (in_handle) {
      in_var_handles.push_back(in_handle);
    }
  }
  return in_var_handles;
}

void ReduceOpHandle::RunImpl() {
  // the input and output may have dummy var.
  std::vector<VarHandle *> in_var_handles = GetValidVarHandle(inputs_);
  std::vector<VarHandle *> out_var_handles = GetValidVarHandle(outputs_);

  PADDLE_ENFORCE_EQ(
      in_var_handles.size(), places_.size(),
      "The number of output should equal to the number of places.");
  PADDLE_ENFORCE_EQ(out_var_handles.size(), 1,
                    "The number of output should be one.");

  // Wait input done, this Wait is asynchronous operation
  if (in_var_handles[0]->generated_op_) {
    for (auto *in : in_var_handles) {
      auto &in_p = in->place_;
      in_var_handles[0]->generated_op_->Wait(dev_ctxes_[in_p]);
    }
  }

  // check in the same place
  auto in_0_handle = static_cast<VarHandle *>(in_var_handles[0]);
  auto pre_place = in_0_handle->place_;

  std::vector<platform::Place> in_places;
  for (auto *in_handle : in_var_handles) {
    auto in_p = in_handle->place_;
    PADDLE_ENFORCE_EQ(in_p.which(), pre_place.which(),
                      "Places must be all on CPU or all on CUDA.");
    in_places.emplace_back(in_p);
  }

  auto out_var = local_scopes_[out_var_handles[0]->scope_idx_]->FindVar(
      out_var_handles[0]->name_);

  auto pre_in_var =
      local_scopes_[in_0_handle->scope_idx_]->FindVar(in_0_handle->name_);

  if (pre_in_var->IsType<framework::SelectedRows>()) {
    auto &pre_in = pre_in_var->Get<framework::SelectedRows>();
    std::vector<const SelectedRows *> in_selected_rows;

    for (auto *in_handle : in_var_handles) {
      auto in_var =
          local_scopes_.at(in_handle->scope_idx_)->FindVar(in_handle->name_);
      auto &in_sr = in_var->Get<framework::SelectedRows>();

      PADDLE_ENFORCE_EQ(in_sr.value().type(), pre_in.value().type(),
                        "The type of input is not consistent.");

      in_selected_rows.emplace_back(&in_sr);
    }
    auto trg = out_var->GetMutable<framework::SelectedRows>();
    GatherSelectedRows(in_selected_rows, in_places, dev_ctxes_,
                       out_var_handles[0]->place_, trg);
  } else {
    auto pre_in = pre_in_var->Get<framework::LoDTensor>();
    std::vector<LoDTensor> lod_tensors;

    // can be refined
    for (auto *in_handle : in_var_handles) {
      auto in_var =
          local_scopes_.at(in_handle->scope_idx_)->FindVar(in_handle->name_);
      auto &in_sr = in_var->Get<framework::LoDTensor>();

      PADDLE_ENFORCE_EQ(in_sr.type(), pre_in.type(),
                        "The type of input is not consistent.");

      lod_tensors.emplace_back(in_sr);
    }

    auto trg = out_var->GetMutable<framework::LoDTensor>();
    trg->Resize(pre_in.dims());
    trg->mutable_data(out_var_handles[0]->place_, pre_in.type());

    if (paddle::platform::is_cpu_place(pre_place)) {
      ReduceLoDTensor func(lod_tensors, trg);
      VisitDataType(ToDataType(lod_tensors[0].type()), func);

    } else if (paddle::platform::is_gpu_place(pre_place)) {
#ifdef PADDLE_WITH_CUDA
      auto out_p = out_var_handles[0]->place_;
      int root = boost::get<platform::CUDAPlace>(out_p).device;

      std::vector<std::function<void()>> all_reduce_calls;
      for (size_t i = 0; i < local_scopes_.size(); ++i) {
        auto &p = in_places[i];
        auto &lod_tensor = lod_tensors[i];
        int dev_id = boost::get<platform::CUDAPlace>(p).device;
        auto &nccl_ctx = nccl_ctxs_.at(dev_id);
        auto stream = nccl_ctx.stream();
        auto comm = nccl_ctx.comm_;

        void *buffer = const_cast<void *>(lod_tensor.data<void>());
        void *recvbuffer = nullptr;
        if (root == dev_id) {
          recvbuffer = trg->mutable_data(out_var_handles[0]->place_);
        }

        all_reduce_calls.emplace_back([=] {
          PADDLE_ENFORCE(platform::dynload::ncclReduce(
              buffer, recvbuffer, static_cast<size_t>(lod_tensor.numel()),
              platform::ToNCCLDataType(lod_tensor.type()), ncclSum, root, comm,
              stream));
        });
      }

      platform::NCCLGroupGuard guard;
      for (auto &call : all_reduce_calls) {
        call();
      }
#else
      PADDLE_THROW("CUDA is not support.");
#endif
    } else {
      PADDLE_THROW("Error");
    }
  }
}
std::string ReduceOpHandle::Name() const { return "reduce"; }
}  // namespace details
}  // namespace framework
}  // namespace paddle