Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
e39adc86
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e39adc86
编写于
4月 16, 2018
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add reduce op handle
上级
494c262a
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
630 addition
and
27 deletion
+630
-27
paddle/fluid/framework/details/CMakeLists.txt
paddle/fluid/framework/details/CMakeLists.txt
+4
-0
paddle/fluid/framework/details/nccl_all_reduce_op_handle.cc
paddle/fluid/framework/details/nccl_all_reduce_op_handle.cc
+1
-27
paddle/fluid/framework/details/reduce_and_gather.h
paddle/fluid/framework/details/reduce_and_gather.h
+94
-0
paddle/fluid/framework/details/reduce_op_handle.cc
paddle/fluid/framework/details/reduce_op_handle.cc
+157
-0
paddle/fluid/framework/details/reduce_op_handle.h
paddle/fluid/framework/details/reduce_op_handle.h
+62
-0
paddle/fluid/framework/details/reduce_op_handle_test.cc
paddle/fluid/framework/details/reduce_op_handle_test.cc
+261
-0
paddle/fluid/framework/details/reduce_util.h
paddle/fluid/framework/details/reduce_util.h
+51
-0
未找到文件。
paddle/fluid/framework/details/CMakeLists.txt
浏览文件 @
e39adc86
...
...
@@ -17,14 +17,18 @@ else()
endif
()
cc_library
(
multi_devices_graph_builder SRCS multi_devices_graph_builder.cc DEPS ssa_graph_builder computation_op_handle
scale_loss_grad_op_handle send_op_handle
${
multi_devices_graph_builder_deps
}
)
cc_library
(
ssa_graph_executor SRCS ssa_graph_executor.cc DEPS ssa_graph framework_proto
)
cc_library
(
threaded_ssa_graph_executor SRCS threaded_ssa_graph_executor.cc DEPS fetch_op_handle ssa_graph_executor scope
simple_threadpool device_context
)
cc_library
(
broadcast_op_handle SRCS broadcast_op_handle.cc DEPS op_handle_base scope ddim memory
)
cc_library
(
gather_op_handle SRCS gather_op_handle.cc DEPS op_handle_base scope ddim memory
)
cc_library
(
reduce_op_handle SRCS reduce_op_handle.cc DEPS op_handle_base scope ddim
)
cc_test
(
broadcast_op_test SRCS broadcast_op_handle_test.cc DEPS var_handle op_handle_base scope ddim memory
device_context broadcast_op_handle
)
cc_test
(
gather_op_test SRCS gather_op_handle_test.cc DEPS var_handle op_handle_base scope ddim memory
device_context gather_op_handle
)
cc_test
(
reduce_op_handle_test SRCS reduce_op_handle_test.cc DEPS var_handle op_handle_base scope ddim memory
device_context reduce_op_handle
)
paddle/fluid/framework/details/nccl_all_reduce_op_handle.cc
浏览文件 @
e39adc86
...
...
@@ -13,8 +13,8 @@
// limitations under the License.
#include "paddle/fluid/framework/details/nccl_all_reduce_op_handle.h"
#include <algorithm>
#include "paddle/fluid/framework/details/reduce_util.h"
namespace
paddle
{
namespace
framework
{
...
...
@@ -29,32 +29,6 @@ NCCLAllReduceOpHandle::NCCLAllReduceOpHandle(
}
}
struct
ReduceLoDTensor
{
const
std
::
vector
<
LoDTensor
>
&
src_tensors_
;
LoDTensor
&
dst_tensor_
;
ReduceLoDTensor
(
const
std
::
vector
<
LoDTensor
>
&
src
,
LoDTensor
*
dst
)
:
src_tensors_
(
src
),
dst_tensor_
(
*
dst
)
{}
template
<
typename
T
>
void
operator
()()
const
{
PADDLE_ENFORCE
(
!
src_tensors_
.
empty
());
auto
&
t0
=
src_tensors_
[
0
];
PADDLE_ENFORCE_NE
(
t0
.
numel
(),
0
);
dst_tensor_
.
Resize
(
t0
.
dims
());
T
*
dst
=
dst_tensor_
.
mutable_data
<
T
>
(
platform
::
CPUPlace
());
std
::
copy
(
t0
.
data
<
T
>
(),
t0
.
data
<
T
>
()
+
t0
.
numel
(),
dst
);
for
(
size_t
i
=
1
;
i
<
src_tensors_
.
size
();
++
i
)
{
auto
&
t
=
src_tensors_
[
i
];
PADDLE_ENFORCE_EQ
(
t
.
dims
(),
t0
.
dims
());
PADDLE_ENFORCE_EQ
(
t
.
type
(),
t0
.
type
());
std
::
transform
(
t
.
data
<
T
>
(),
t
.
data
<
T
>
()
+
t
.
numel
(),
dst
,
dst
,
[](
T
a
,
T
b
)
->
T
{
return
a
+
b
;
});
}
}
};
void
NCCLAllReduceOpHandle
::
RunImpl
()
{
if
(
inputs_
.
size
()
==
1
)
{
return
;
// No need to all reduce when GPU count = 1;
...
...
paddle/fluid/framework/details/reduce_and_gather.h
0 → 100644
浏览文件 @
e39adc86
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <algorithm>
#include <map>
#include <vector>
#include "paddle/fluid/framework/details/reduce_and_gather.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/selected_rows.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
struct
ReduceLoDTensor
{
const
std
::
vector
<
LoDTensor
>
&
src_tensors_
;
LoDTensor
&
dst_tensor_
;
ReduceLoDTensor
(
const
std
::
vector
<
LoDTensor
>
&
src
,
LoDTensor
*
dst
)
:
src_tensors_
(
src
),
dst_tensor_
(
*
dst
)
{}
template
<
typename
T
>
void
operator
()()
const
{
PADDLE_ENFORCE
(
!
src_tensors_
.
empty
());
auto
&
t0
=
src_tensors_
[
0
];
PADDLE_ENFORCE_NE
(
t0
.
numel
(),
0
);
dst_tensor_
.
Resize
(
t0
.
dims
());
T
*
dst
=
dst_tensor_
.
mutable_data
<
T
>
(
platform
::
CPUPlace
());
std
::
copy
(
t0
.
data
<
T
>
(),
t0
.
data
<
T
>
()
+
t0
.
numel
(),
dst
);
for
(
size_t
i
=
1
;
i
<
src_tensors_
.
size
();
++
i
)
{
auto
&
t
=
src_tensors_
[
i
];
PADDLE_ENFORCE_EQ
(
t
.
dims
(),
t0
.
dims
());
PADDLE_ENFORCE_EQ
(
t
.
type
(),
t0
.
type
());
std
::
transform
(
t
.
data
<
T
>
(),
t
.
data
<
T
>
()
+
t
.
numel
(),
dst
,
dst
,
[](
T
a
,
T
b
)
->
T
{
return
a
+
b
;
});
}
}
};
inline
void
GatherSelectedRows
(
const
std
::
vector
<
const
SelectedRows
*>
&
src_selecte_rows_
,
const
std
::
vector
<
platform
::
Place
>
&
in_places
,
const
std
::
unordered_map
<
platform
::
Place
,
platform
::
DeviceContext
*
,
platform
::
PlaceHash
>
&
dev_ctxes
,
const
platform
::
Place
&
out_place
,
SelectedRows
*
dst_selecte_rows
)
{
PADDLE_ENFORCE
(
!
src_selecte_rows_
.
empty
());
std
::
vector
<
Tensor
>
in_tensors
;
std
::
vector
<
int64_t
>
out_rows
;
for
(
auto
in_sr_ptr
:
src_selecte_rows_
)
{
auto
&
in_sr
=
*
in_sr_ptr
;
in_tensors
.
emplace_back
(
in_sr
.
value
());
out_rows
.
insert
(
out_rows
.
end
(),
in_sr
.
rows
().
begin
(),
in_sr
.
rows
().
end
());
}
auto
&
pre_in
=
src_selecte_rows_
[
0
];
auto
&
dst_tensor
=
*
dst_selecte_rows
;
dst_tensor
.
set_height
(
pre_in
->
height
());
dst_tensor
.
set_rows
(
out_rows
);
size_t
rows
=
out_rows
.
size
();
DDim
out_dim
=
pre_in
->
GetCompleteDims
();
out_dim
[
0
]
=
static_cast
<
int64_t
>
(
rows
);
dst_tensor
.
mutable_value
()
->
Resize
(
out_dim
);
dst_tensor
.
mutable_value
()
->
mutable_data
(
out_place
,
pre_in
->
value
().
type
());
Tensor
*
out_tensor
=
dst_tensor
.
mutable_value
();
// copy
int
s
=
0
,
e
=
0
;
for
(
size_t
j
=
0
;
j
<
in_tensors
.
size
();
++
j
)
{
e
+=
in_tensors
[
j
].
dims
()[
0
];
auto
sub_out
=
out_tensor
->
Slice
(
s
,
e
);
paddle
::
framework
::
TensorCopy
(
in_tensors
[
j
],
out_place
,
*
(
dev_ctxes
.
at
(
in_places
[
j
])),
&
sub_out
);
s
=
e
;
}
}
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/reduce_op_handle.cc
0 → 100644
浏览文件 @
e39adc86
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/reduce_op_handle.h"
#include "paddle/fluid/framework/details/gather_op_handle.h"
#include "paddle/fluid/framework/details/reduce_and_gather.h"
#include "paddle/fluid/platform/nccl_helper.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
std
::
vector
<
VarHandle
*>
GetValidVarHandle
(
const
std
::
vector
<
VarHandleBase
*>
&
inputs
)
{
std
::
vector
<
VarHandle
*>
in_var_handles
;
for
(
auto
*
in
:
inputs
)
{
auto
*
in_handle
=
dynamic_cast
<
VarHandle
*>
(
in
);
if
(
in_handle
)
{
in_var_handles
.
push_back
(
in_handle
);
}
}
return
in_var_handles
;
}
void
ReduceOpHandle
::
RunImpl
()
{
// the input and output may have dummy var.
std
::
vector
<
VarHandle
*>
in_var_handles
=
GetValidVarHandle
(
inputs_
);
std
::
vector
<
VarHandle
*>
out_var_handles
=
GetValidVarHandle
(
outputs_
);
PADDLE_ENFORCE_EQ
(
in_var_handles
.
size
(),
places_
.
size
(),
"The number of output should equal to the number of places."
);
PADDLE_ENFORCE_EQ
(
out_var_handles
.
size
(),
1
,
"The number of output should be one."
);
// Wait input done, this Wait is asynchronous operation
if
(
in_var_handles
[
0
]
->
generated_op_
)
{
for
(
auto
*
in
:
in_var_handles
)
{
auto
&
in_p
=
in
->
place_
;
in_var_handles
[
0
]
->
generated_op_
->
Wait
(
dev_ctxes_
[
in_p
]);
}
}
// check in the same place
auto
in_0_handle
=
static_cast
<
VarHandle
*>
(
in_var_handles
[
0
]);
auto
pre_place
=
in_0_handle
->
place_
;
std
::
vector
<
platform
::
Place
>
in_places
;
for
(
auto
*
in_handle
:
in_var_handles
)
{
auto
in_p
=
in_handle
->
place_
;
PADDLE_ENFORCE_EQ
(
in_p
.
which
(),
pre_place
.
which
(),
"Places must be all on CPU or all on CUDA."
);
in_places
.
emplace_back
(
in_p
);
}
auto
out_var
=
local_scopes_
[
out_var_handles
[
0
]
->
scope_idx_
]
->
FindVar
(
out_var_handles
[
0
]
->
name_
);
auto
pre_in_var
=
local_scopes_
[
in_0_handle
->
scope_idx_
]
->
FindVar
(
in_0_handle
->
name_
);
if
(
pre_in_var
->
IsType
<
framework
::
SelectedRows
>
())
{
auto
&
pre_in
=
pre_in_var
->
Get
<
framework
::
SelectedRows
>
();
std
::
vector
<
const
SelectedRows
*>
in_selected_rows
;
for
(
auto
*
in_handle
:
in_var_handles
)
{
auto
in_var
=
local_scopes_
.
at
(
in_handle
->
scope_idx_
)
->
FindVar
(
in_handle
->
name_
);
auto
&
in_sr
=
in_var
->
Get
<
framework
::
SelectedRows
>
();
PADDLE_ENFORCE_EQ
(
in_sr
.
value
().
type
(),
pre_in
.
value
().
type
(),
"The type of input is not consistent."
);
in_selected_rows
.
emplace_back
(
&
in_sr
);
}
auto
trg
=
out_var
->
GetMutable
<
framework
::
SelectedRows
>
();
GatherSelectedRows
(
in_selected_rows
,
in_places
,
dev_ctxes_
,
out_var_handles
[
0
]
->
place_
,
trg
);
}
else
{
auto
pre_in
=
pre_in_var
->
Get
<
framework
::
LoDTensor
>
();
std
::
vector
<
LoDTensor
>
lod_tensors
;
// can be refined
for
(
auto
*
in_handle
:
in_var_handles
)
{
auto
in_var
=
local_scopes_
.
at
(
in_handle
->
scope_idx_
)
->
FindVar
(
in_handle
->
name_
);
auto
&
in_sr
=
in_var
->
Get
<
framework
::
LoDTensor
>
();
PADDLE_ENFORCE_EQ
(
in_sr
.
type
(),
pre_in
.
type
(),
"The type of input is not consistent."
);
lod_tensors
.
emplace_back
(
in_sr
);
}
auto
trg
=
out_var
->
GetMutable
<
framework
::
LoDTensor
>
();
trg
->
Resize
(
pre_in
.
dims
());
trg
->
mutable_data
(
out_var_handles
[
0
]
->
place_
,
pre_in
.
type
());
if
(
paddle
::
platform
::
is_cpu_place
(
pre_place
))
{
ReduceLoDTensor
func
(
lod_tensors
,
trg
);
VisitDataType
(
ToDataType
(
lod_tensors
[
0
].
type
()),
func
);
}
else
if
(
paddle
::
platform
::
is_gpu_place
(
pre_place
))
{
#ifdef PADDLE_WITH_CUDA
auto
out_p
=
out_var_handles
[
0
]
->
place_
;
int
root
=
boost
::
get
<
platform
::
CUDAPlace
>
(
out_p
).
device
;
std
::
vector
<
std
::
function
<
void
()
>>
all_reduce_calls
;
for
(
size_t
i
=
0
;
i
<
local_scopes_
.
size
();
++
i
)
{
auto
&
p
=
in_places
[
i
];
auto
&
lod_tensor
=
lod_tensors
[
i
];
int
dev_id
=
boost
::
get
<
platform
::
CUDAPlace
>
(
p
).
device
;
auto
&
nccl_ctx
=
nccl_ctxs_
.
at
(
dev_id
);
auto
stream
=
nccl_ctx
.
stream
();
auto
comm
=
nccl_ctx
.
comm_
;
void
*
buffer
=
const_cast
<
void
*>
(
lod_tensor
.
data
<
void
>
());
void
*
recvbuffer
=
nullptr
;
if
(
root
==
dev_id
)
{
recvbuffer
=
trg
->
mutable_data
(
out_var_handles
[
0
]
->
place_
);
}
all_reduce_calls
.
emplace_back
([
=
]
{
PADDLE_ENFORCE
(
platform
::
dynload
::
ncclReduce
(
buffer
,
recvbuffer
,
static_cast
<
size_t
>
(
lod_tensor
.
numel
()),
platform
::
ToNCCLDataType
(
lod_tensor
.
type
()),
ncclSum
,
root
,
comm
,
stream
));
});
}
platform
::
NCCLGroupGuard
guard
;
for
(
auto
&
call
:
all_reduce_calls
)
{
call
();
}
#else
PADDLE_THROW
(
"CUDA is not support."
);
#endif
}
else
{
PADDLE_THROW
(
"Error"
);
}
}
}
std
::
string
ReduceOpHandle
::
Name
()
const
{
return
"reduce"
;
}
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/reduce_op_handle.h
0 → 100644
浏览文件 @
e39adc86
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <map>
#include <string>
#include <vector>
#include "paddle/fluid/framework/details/op_handle_base.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/nccl_helper.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
struct
ReduceOpHandle
:
public
OpHandleBase
{
const
std
::
vector
<
Scope
*>
&
local_scopes_
;
const
std
::
vector
<
platform
::
Place
>
&
places_
;
#ifdef PADDLE_WITH_CUDA
const
platform
::
NCCLContextMap
&
nccl_ctxs_
;
ReduceOpHandle
(
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
std
::
vector
<
platform
::
Place
>
&
places
,
const
platform
::
NCCLContextMap
&
nccl_ctxs
)
:
local_scopes_
(
local_scopes
),
places_
(
places
),
nccl_ctxs_
(
nccl_ctxs
)
{
for
(
auto
&
p_ctx
:
nccl_ctxs_
.
contexts_
)
{
dev_ctxes_
[
platform
::
CUDAPlace
(
p_ctx
.
first
)]
=
p_ctx
.
second
.
ctx_
.
get
();
}
}
#else
ReduceOpHandle
(
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
std
::
vector
<
platform
::
Place
>
&
places
)
:
local_scopes_
(
local_scopes
),
places_
(
places
)
{}
#endif
std
::
string
Name
()
const
override
;
bool
IsMultiDeviceTransfer
()
override
{
return
false
;
};
protected:
void
RunImpl
()
override
;
};
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/reduce_op_handle_test.cc
0 → 100644
浏览文件 @
e39adc86
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/reduce_op_handle.h"
#include "gtest/gtest.h"
#include "paddle/fluid/platform/device_context.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
namespace
f
=
paddle
::
framework
;
namespace
p
=
paddle
::
platform
;
// test data amount
const
f
::
DDim
kDims
=
{
20
,
20
};
struct
TestReduceOpHandle
{
bool
use_gpu_
;
Scope
g_scope_
;
std
::
vector
<
Scope
*>
local_scopes_
;
std
::
unique_ptr
<
OpHandleBase
>
op_handle_
;
std
::
vector
<
std
::
unique_ptr
<
VarHandleBase
>>
vars_
;
std
::
vector
<
p
::
Place
>
gpu_list_
;
std
::
vector
<
std
::
unique_ptr
<
p
::
DeviceContext
>>
ctxs_
;
#ifdef PADDLE_WITH_CUDA
std
::
unique_ptr
<
platform
::
NCCLContextMap
>
nccl_ctxs_
;
#endif
void
WaitAll
()
{
for
(
size_t
j
=
0
;
j
<
ctxs_
.
size
();
++
j
)
{
ctxs_
[
j
]
->
Wait
();
}
#ifdef PADDLE_WITH_CUDA
nccl_ctxs_
->
WaitAll
();
#endif
}
void
InitCtxOnGpu
(
bool
use_gpu
)
{
use_gpu_
=
use_gpu
;
if
(
use_gpu
)
{
#ifdef PADDLE_WITH_CUDA
int
count
=
p
::
GetCUDADeviceCount
();
if
(
count
<=
1
)
{
LOG
(
WARNING
)
<<
"Cannot test multi-gpu Broadcast, because the CUDA "
"device count is "
<<
count
;
exit
(
0
);
}
for
(
int
i
=
0
;
i
<
count
;
++
i
)
{
auto
p
=
p
::
CUDAPlace
(
i
);
gpu_list_
.
push_back
(
p
);
ctxs_
.
emplace_back
(
new
p
::
CUDADeviceContext
(
p
));
}
#else
PADDLE_THROW
(
"CUDA is not support."
);
#endif
}
else
{
int
count
=
8
;
for
(
int
i
=
0
;
i
<
count
;
++
i
)
{
auto
p
=
p
::
CPUPlace
();
gpu_list_
.
push_back
(
p
);
ctxs_
.
emplace_back
(
new
p
::
CPUDeviceContext
(
p
));
}
}
#ifdef PADDLE_WITH_CUDA
nccl_ctxs_
.
reset
(
new
platform
::
NCCLContextMap
(
gpu_list_
));
#endif
}
void
InitReduceOp
(
size_t
input_scope_idx
)
{
for
(
size_t
j
=
0
;
j
<
gpu_list_
.
size
();
++
j
)
{
local_scopes_
.
push_back
(
&
(
g_scope_
.
NewScope
()));
local_scopes_
[
j
]
->
Var
(
"out"
);
}
local_scopes_
[
input_scope_idx
]
->
Var
(
"input"
);
#ifdef PADDLE_WITH_CUDA
op_handle_
.
reset
(
new
ReduceOpHandle
(
local_scopes_
,
gpu_list_
,
*
nccl_ctxs_
));
#else
op_handle_
.
reset
(
new
ReduceOpHandle
(
local_scopes_
,
gpu_list_
));
#endif
// add input
for
(
size_t
j
=
0
;
j
<
gpu_list_
.
size
();
++
j
)
{
op_handle_
->
dev_ctxes_
[
gpu_list_
[
j
]]
=
ctxs_
[
j
].
get
();
vars_
.
emplace_back
(
new
VarHandle
());
VarHandle
*
in_var_handle
=
static_cast
<
VarHandle
*>
(
vars_
.
back
().
get
());
in_var_handle
->
place_
=
gpu_list_
[
j
];
in_var_handle
->
name_
=
"input"
;
in_var_handle
->
version_
=
1
;
in_var_handle
->
scope_idx_
=
j
;
in_var_handle
->
generated_op_
=
nullptr
;
op_handle_
->
AddInput
(
in_var_handle
);
}
// add dummy var
vars_
.
emplace_back
(
new
DummyVarHandle
());
DummyVarHandle
*
in_dummy_var_handle
=
static_cast
<
DummyVarHandle
*>
(
vars_
.
back
().
get
());
in_dummy_var_handle
->
generated_op_
=
nullptr
;
op_handle_
->
AddInput
(
in_dummy_var_handle
);
// add output
vars_
.
emplace_back
(
new
VarHandle
());
VarHandle
*
out_var_handle
=
static_cast
<
VarHandle
*>
(
vars_
.
back
().
get
());
out_var_handle
->
place_
=
gpu_list_
[
input_scope_idx
];
out_var_handle
->
name_
=
"out"
;
out_var_handle
->
version_
=
2
;
out_var_handle
->
scope_idx_
=
input_scope_idx
;
op_handle_
->
AddOutput
(
out_var_handle
);
// add dummy var
vars_
.
emplace_back
(
new
DummyVarHandle
());
DummyVarHandle
*
dummy_var_handle
=
static_cast
<
DummyVarHandle
*>
(
vars_
.
back
().
get
());
op_handle_
->
AddOutput
(
dummy_var_handle
);
}
void
TestReduceSelectedRows
(
size_t
output_scope_idx
)
{
int
height
=
kDims
[
0
]
*
2
;
std
::
vector
<
int64_t
>
rows
{
0
,
1
,
2
,
3
,
3
,
0
,
14
,
7
,
3
,
1
,
2
,
4
,
6
,
3
,
1
,
1
,
1
,
1
,
3
,
7
};
std
::
vector
<
float
>
send_vector
(
f
::
product
(
kDims
));
for
(
size_t
k
=
0
;
k
<
send_vector
.
size
();
++
k
)
{
send_vector
[
k
]
=
k
;
}
for
(
size_t
input_scope_idx
=
0
;
input_scope_idx
<
gpu_list_
.
size
();
++
input_scope_idx
)
{
auto
in_var
=
local_scopes_
[
input_scope_idx
]
->
Var
(
"input"
);
auto
in_selected_rows
=
in_var
->
GetMutable
<
f
::
SelectedRows
>
();
auto
value
=
in_selected_rows
->
mutable_value
();
value
->
mutable_data
<
float
>
(
kDims
,
gpu_list_
[
input_scope_idx
]);
in_selected_rows
->
set_height
(
height
);
in_selected_rows
->
set_rows
(
rows
);
paddle
::
framework
::
TensorFromVector
<
float
>
(
send_vector
,
*
(
ctxs_
[
input_scope_idx
]),
value
);
value
->
Resize
(
kDims
);
}
auto
out_var
=
local_scopes_
[
output_scope_idx
]
->
Var
(
"out"
);
auto
out_selected_rows
=
out_var
->
GetMutable
<
f
::
SelectedRows
>
();
auto
in_var
=
local_scopes_
[
output_scope_idx
]
->
Var
(
"input"
);
auto
in_selected_rows
=
in_var
->
GetMutable
<
f
::
SelectedRows
>
();
out_selected_rows
->
mutable_value
()
->
ShareDataWith
(
in_selected_rows
->
value
());
op_handle_
->
Run
(
false
);
WaitAll
();
p
::
CPUPlace
cpu_place
;
auto
&
out_select_rows
=
out_var
->
Get
<
f
::
SelectedRows
>
();
auto
rt
=
out_select_rows
.
value
();
PADDLE_ENFORCE_EQ
(
out_select_rows
.
height
(),
height
,
"height is not equal."
);
for
(
size_t
k
=
0
;
k
<
out_select_rows
.
rows
().
size
();
++
k
)
{
PADDLE_ENFORCE_EQ
(
out_select_rows
.
rows
()[
k
],
rows
[
k
%
rows
.
size
()]);
}
f
::
Tensor
result_tensor
;
f
::
TensorCopy
(
rt
,
cpu_place
,
*
(
ctxs_
[
output_scope_idx
]),
&
result_tensor
);
float
*
ct
=
result_tensor
.
data
<
float
>
();
for
(
int64_t
j
=
0
;
j
<
f
::
product
(
result_tensor
.
dims
());
++
j
)
{
ASSERT_NEAR
(
ct
[
j
],
send_vector
[
j
%
send_vector
.
size
()],
1e-5
);
}
}
void
TestReduceLodTensors
(
size_t
output_scope_idx
)
{
std
::
vector
<
float
>
send_vector
(
static_cast
<
size_t
>
(
f
::
product
(
kDims
)));
for
(
size_t
k
=
0
;
k
<
send_vector
.
size
();
++
k
)
{
send_vector
[
k
]
=
k
;
}
f
::
LoD
lod
{{
0
,
10
,
20
}};
for
(
size_t
input_scope_idx
=
0
;
input_scope_idx
<
gpu_list_
.
size
();
++
input_scope_idx
)
{
auto
in_var
=
local_scopes_
[
input_scope_idx
]
->
Var
(
"input"
);
auto
in_lod_tensor
=
in_var
->
GetMutable
<
f
::
LoDTensor
>
();
in_lod_tensor
->
mutable_data
<
float
>
(
kDims
,
gpu_list_
[
input_scope_idx
]);
in_lod_tensor
->
set_lod
(
lod
);
paddle
::
framework
::
TensorFromVector
<
float
>
(
send_vector
,
*
(
ctxs_
[
input_scope_idx
]),
in_lod_tensor
);
}
auto
out_var
=
local_scopes_
[
output_scope_idx
]
->
Var
(
"out"
);
auto
out_lodtensor
=
out_var
->
GetMutable
<
f
::
LoDTensor
>
();
auto
in_var
=
local_scopes_
[
output_scope_idx
]
->
Var
(
"input"
);
auto
in_lodtensor
=
in_var
->
Get
<
f
::
LoDTensor
>
();
out_lodtensor
->
ShareDataWith
(
in_lodtensor
);
op_handle_
->
Run
(
false
);
WaitAll
();
p
::
CPUPlace
cpu_place
;
auto
&
rt
=
out_var
->
Get
<
f
::
LoDTensor
>
();
f
::
Tensor
result_tensor
;
f
::
TensorCopy
(
rt
,
cpu_place
,
*
(
ctxs_
[
output_scope_idx
]),
&
result_tensor
);
float
*
ct
=
result_tensor
.
data
<
float
>
();
for
(
int64_t
j
=
0
;
j
<
f
::
product
(
result_tensor
.
dims
());
++
j
)
{
ASSERT_NEAR
(
ct
[
j
],
send_vector
[
j
]
*
gpu_list_
.
size
(),
1e-5
);
}
}
};
TEST
(
ReduceTester
,
TestCPUReduceTestSelectedRows
)
{
TestReduceOpHandle
test_op
;
size_t
input_scope_idx
=
0
;
test_op
.
InitCtxOnGpu
(
false
);
test_op
.
InitReduceOp
(
input_scope_idx
);
test_op
.
TestReduceSelectedRows
(
input_scope_idx
);
}
// #ifdef PADDLE_WITH_CUDA
//
// TEST(ReduceTester, TestGPUReduceTestSelectedRows) {
// TestReduceOpHandle test_op;
// size_t input_scope_idx = 0;
// test_op.InitCtxOnGpu(true);
// test_op.InitReduceOp(input_scope_idx);
// test_op.TestReduceSelectedRows(input_scope_idx);
// }
//
// TEST(ReduceTester, TestCPUReduceTestLodTensor) {
// TestReduceOpHandle test_op;
// size_t input_scope_idx = 0;
// test_op.InitCtxOnGpu(true);
// test_op.InitReduceOp(input_scope_idx);
// test_op.TestReduceLodTensors(input_scope_idx);
// }
// #endif
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/reduce_util.h
0 → 100644
浏览文件 @
e39adc86
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <algorithm>
#include <vector>
#include "paddle/fluid/framework/details/reduce_util.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
struct
ReduceLoDTensor
{
const
std
::
vector
<
LoDTensor
>
&
src_tensors_
;
LoDTensor
&
dst_tensor_
;
ReduceLoDTensor
(
const
std
::
vector
<
LoDTensor
>
&
src
,
LoDTensor
*
dst
)
:
src_tensors_
(
src
),
dst_tensor_
(
*
dst
)
{}
template
<
typename
T
>
void
operator
()()
const
{
PADDLE_ENFORCE
(
!
src_tensors_
.
empty
());
auto
&
t0
=
src_tensors_
[
0
];
PADDLE_ENFORCE_NE
(
t0
.
numel
(),
0
);
dst_tensor_
.
Resize
(
t0
.
dims
());
T
*
dst
=
dst_tensor_
.
mutable_data
<
T
>
(
platform
::
CPUPlace
());
std
::
copy
(
t0
.
data
<
T
>
(),
t0
.
data
<
T
>
()
+
t0
.
numel
(),
dst
);
for
(
size_t
i
=
1
;
i
<
src_tensors_
.
size
();
++
i
)
{
auto
&
t
=
src_tensors_
[
i
];
PADDLE_ENFORCE_EQ
(
t
.
dims
(),
t0
.
dims
());
PADDLE_ENFORCE_EQ
(
t
.
type
(),
t0
.
type
());
std
::
transform
(
t
.
data
<
T
>
(),
t
.
data
<
T
>
()
+
t
.
numel
(),
dst
,
dst
,
[](
T
a
,
T
b
)
->
T
{
return
a
+
b
;
});
}
}
};
}
// namespace details
}
// namespace framework
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录