sequence_pool_op.h 5.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
L
Luo Tao 已提交
18
#include "paddle/operators/math/math_function.h"
19 20 21 22 23 24

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
25 26 27
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
28 29 30 31 32
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

template <typename Place, typename T>
Y
Yu Yang 已提交
33
class SequencePoolKernel : public framework::OpKernel<T> {
34 35 36 37
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* in = context.Input<LoDTensor>("X");
    auto* out = context.Output<LoDTensor>("Out");
D
dzhwinter 已提交
38
    std::string pooltype = context.Attr<std::string>("pooltype");
39 40

    auto dims = in->dims();
Q
Qiao Longfei 已提交
41
    auto lod = in->lod();
42 43
    int64_t w = in->numel() / dims[0];

Q
Qiao Longfei 已提交
44 45 46 47 48 49 50 51 52 53 54
    // InferShape by lod
    PADDLE_ENFORCE_EQ(lod.size(), 1UL, "Only support one level sequence now.");
    PADDLE_ENFORCE_GE(
        dims[0],
        /*batch size = */ static_cast<int64_t>(lod[0].size() - 1),
        "The first dimension of Input(X) must be large than batch size.");
    dims[0] = lod[0].size() - 1;
    out->Resize({dims});

    auto lod_level_0 = lod[0];

55 56
    out->mutable_data<T>(context.GetPlace());
    auto place = context.GetEigenDevice<Place>();
Q
Qiao Longfei 已提交
57
    for (int i = 0; i < static_cast<int>(lod_level_0.size()) - 1; ++i) {
58 59 60
      Tensor in_t = in->Slice(static_cast<int>(lod_level_0[i]),
                              static_cast<int>(lod_level_0[i + 1]));
      Tensor out_t = out->Slice(i, i + 1);
Q
Qiao Longfei 已提交
61
      int64_t h = static_cast<int64_t>(lod_level_0[i + 1] - lod_level_0[i]);
62 63
      auto in_e = EigenMatrix<T>::From(in_t, framework::make_ddim({h, w}));
      auto out_e = EigenVector<T>::Flatten(out_t);
64

D
dzhwinter 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
      if (pooltype == "AVERAGE") {
        out_e.device(place) = in_e.mean(Eigen::array<int, 1>({{0}}));
      } else if (pooltype == "SUM") {
        out_e.device(place) = in_e.sum(Eigen::array<int, 1>({{0}}));
      } else if (pooltype == "SQRT") {
        out_e.device(place) = in_e.sum(Eigen::array<int, 1>({{0}})) /
                              std::sqrt(static_cast<T>(h));
      } else if (pooltype == "MAX") {
        out_e.device(place) = in_e.maximum(Eigen::array<int, 1>({{0}}));
      } else if (pooltype == "LAST") {
        out_e.device(place) = in_e.chip(h - 1, 0);
      } else if (pooltype == "FIRST") {
        out_e.device(place) = in_e.chip(0, 0);
      } else {
        PADDLE_THROW("unsupported pooling pooltype");
80
      }
81 82 83 84 85
    }
  }
};

template <typename Place, typename T>
Y
Yu Yang 已提交
86
class SequencePoolGradKernel : public framework::OpKernel<T> {
87 88
 public:
  void Compute(const framework::ExecutionContext& context) const override {
89 90
    auto* in = context.Input<LoDTensor>("X");
    auto* in_g = context.Output<LoDTensor>(framework::GradVarName("X"));
L
Luo Tao 已提交
91
    auto* out_g = context.Input<LoDTensor>(framework::GradVarName("Out"));
D
dzhwinter 已提交
92
    std::string pooltype = context.Attr<std::string>("pooltype");
93 94

    auto dims = in->dims();
95
    auto lod = in->lod()[0];
96 97 98
    int64_t w = in->numel() / dims[0];

    in_g->mutable_data<T>(context.GetPlace());
D
dzhwinter 已提交
99 100
    if (pooltype == "LAST" || pooltype == "FIRST") {
      // set X@Grad be zero at first when pooltype is LAST/FIRST
Q
qijun 已提交
101 102
      math::SetConstant<Place, T> functor;
      functor(context.device_context(), in_g, 0);
L
Luo Tao 已提交
103
    }
104
    auto place = context.GetEigenDevice<Place>();
105
    for (int i = 0; i < static_cast<int>(lod.size()) - 1; ++i) {
106 107 108
      auto in_g_t =
          in_g->Slice(static_cast<int>(lod[i]), static_cast<int>(lod[i + 1]));
      auto out_g_t = out_g->Slice(i, i + 1);
109
      int64_t h = static_cast<int64_t>(lod[i + 1] - lod[i]);
110 111
      auto in_g_e = EigenMatrix<T>::From(in_g_t, {h, w});
      auto out_g_e = EigenMatrix<T>::From(out_g_t, {1, w});
112
      Eigen::DSizes<int, 2> bcast(h, 1);
113

D
dzhwinter 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
      if (pooltype == "AVERAGE") {
        in_g_e.device(place) = (out_g_e / static_cast<T>(h)).broadcast(bcast);
      } else if (pooltype == "SUM") {
        in_g_e.device(place) = (out_g_e).broadcast(bcast);
      } else if (pooltype == "SQRT") {
        in_g_e.device(place) =
            (out_g_e / std::sqrt(static_cast<T>(h))).broadcast(bcast);
      } else if (pooltype == "MAX") {
        auto in_t =
            in->Slice(static_cast<int>(lod[i]), static_cast<int>(lod[i + 1]));
        Eigen::Map<const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>>
            in_t_map(in_t.data<T>(), h, w);
        int row_id;
        Eigen::array<int, 2> extents{{1, 1}};
        for (int col_id = 0; col_id < w; col_id++) {
          in_t_map.col(col_id).maxCoeff(&row_id);
          Eigen::array<int, 2> in_offsets{{row_id, col_id}};
          Eigen::array<int, 2> out_offsets{{0, col_id}};
          in_g_e.slice(in_offsets, extents).device(place) =
              out_g_e.slice(out_offsets, extents);
L
Luo Tao 已提交
134
        }
D
dzhwinter 已提交
135 136 137 138 139 140
      } else if (pooltype == "LAST") {
        in_g_e.chip(h - 1, 0).device(place) = out_g_e;
      } else if (pooltype == "FIRST") {
        in_g_e.chip(0, 0).device(place) = out_g_e;
      } else {
        PADDLE_THROW("unsupported pooling pooltype");
141
      }
142 143 144 145 146 147
    }
  }
};

}  // namespace operators
}  // namespace paddle