sequence_pool_op.h 3.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
24 25 26
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
27 28 29 30
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

31 32 33 34 35 36 37 38 39
enum SeqPoolType {
  AVERAGE = 0,
  SUM = 1,
  SQRT = 2,  // square_root_n
  MAX = 3,
  LAST = 4,
  FIRST = 5
};

40
template <typename Place, typename T>
41
class SequencePoolKernel : public framework::OpKernel {
42 43 44 45
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* in = context.Input<LoDTensor>("X");
    auto* out = context.Output<LoDTensor>("Out");
46
    int strategy = context.Attr<int>("strategy");
47 48

    auto dims = in->dims();
49
    auto lod = in->lod()[0];
50 51 52 53
    int64_t w = in->numel() / dims[0];

    out->mutable_data<T>(context.GetPlace());
    auto place = context.GetEigenDevice<Place>();
54 55 56
    for (int i = 0; i < static_cast<int>(lod.size()) - 1; ++i) {
      Tensor in_t =
          in->Slice<T>(static_cast<int>(lod[i]), static_cast<int>(lod[i + 1]));
57
      Tensor out_t = out->Slice<T>(i, i + 1);
58
      int64_t h = static_cast<int64_t>(lod[i + 1] - lod[i]);
59 60
      auto in_e = EigenMatrix<T>::From(in_t, framework::make_ddim({h, w}));
      auto out_e = EigenVector<T>::Flatten(out_t);
61 62 63 64 65 66 67 68 69

      switch (strategy) {
        case AVERAGE:
          out_e.device(place) = in_e.mean(Eigen::array<int, 1>({{0}}));
          break;
        case SUM:
          out_e.device(place) = in_e.sum(Eigen::array<int, 1>({{0}}));
          break;
        default:
L
Luo Tao 已提交
70
          PADDLE_THROW("unsupported pooling strategy");
71
      }
72 73 74 75 76
    }
  }
};

template <typename Place, typename T>
77
class SequencePoolGradKernel : public framework::OpKernel {
78 79
 public:
  void Compute(const framework::ExecutionContext& context) const override {
80
    auto* in = context.Input<LoDTensor>("X");
81
    auto* out_g = context.Input<LoDTensor>(framework::GradVarName("Out"));
82
    auto* in_g = context.Output<LoDTensor>(framework::GradVarName("X"));
83
    int strategy = context.Attr<int>("strategy");
84 85

    auto dims = in->dims();
86
    auto lod = in->lod()[0];
87 88 89 90
    int64_t w = in->numel() / dims[0];

    in_g->mutable_data<T>(context.GetPlace());
    auto place = context.GetEigenDevice<Place>();
91 92 93
    for (int i = 0; i < static_cast<int>(lod.size()) - 1; ++i) {
      auto in_g_t = in_g->Slice<T>(static_cast<int>(lod[i]),
                                   static_cast<int>(lod[i + 1]));
94
      auto out_g_t = out_g->Slice<T>(i, i + 1);
95
      int64_t h = static_cast<int64_t>(lod[i + 1] - lod[i]);
96 97
      auto in_g_e = EigenMatrix<T>::From(in_g_t, {h, w});
      auto out_g_e = EigenMatrix<T>::From(out_g_t, {1, w});
98
      Eigen::DSizes<int, 2> bcast(h, 1);
99 100 101 102 103 104 105 106 107

      switch (strategy) {
        case AVERAGE:
          in_g_e.device(place) = (out_g_e / static_cast<T>(h)).broadcast(bcast);
          break;
        case SUM:
          in_g_e.device(place) = (out_g_e).broadcast(bcast);
          break;
        default:
L
Luo Tao 已提交
108
          PADDLE_THROW("unsupported pooling strategy");
109
      }
110 111 112 113 114 115
    }
  }
};

}  // namespace operators
}  // namespace paddle