bbox_utils.py 8.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
import paddle
W
wangguanzhong 已提交
17 18
import paddle.nn.functional as F
import math
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54


def bbox2delta(src_boxes, tgt_boxes, weights):
    src_w = src_boxes[:, 2] - src_boxes[:, 0]
    src_h = src_boxes[:, 3] - src_boxes[:, 1]
    src_ctr_x = src_boxes[:, 0] + 0.5 * src_w
    src_ctr_y = src_boxes[:, 1] + 0.5 * src_h

    tgt_w = tgt_boxes[:, 2] - tgt_boxes[:, 0]
    tgt_h = tgt_boxes[:, 3] - tgt_boxes[:, 1]
    tgt_ctr_x = tgt_boxes[:, 0] + 0.5 * tgt_w
    tgt_ctr_y = tgt_boxes[:, 1] + 0.5 * tgt_h

    wx, wy, ww, wh = weights
    dx = wx * (tgt_ctr_x - src_ctr_x) / src_w
    dy = wy * (tgt_ctr_y - src_ctr_y) / src_h
    dw = ww * paddle.log(tgt_w / src_w)
    dh = wh * paddle.log(tgt_h / src_h)

    deltas = paddle.stack((dx, dy, dw, dh), axis=1)
    return deltas


def delta2bbox(deltas, boxes, weights):
    clip_scale = math.log(1000.0 / 16)

    widths = boxes[:, 2] - boxes[:, 0]
    heights = boxes[:, 3] - boxes[:, 1]
    ctr_x = boxes[:, 0] + 0.5 * widths
    ctr_y = boxes[:, 1] + 0.5 * heights

    wx, wy, ww, wh = weights
    dx = deltas[:, 0::4] / wx
    dy = deltas[:, 1::4] / wy
    dw = deltas[:, 2::4] / ww
    dh = deltas[:, 3::4] / wh
55
    # Prevent sending too large values into paddle.exp()
56 57 58 59 60 61 62 63
    dw = paddle.clip(dw, max=clip_scale)
    dh = paddle.clip(dh, max=clip_scale)

    pred_ctr_x = dx * widths.unsqueeze(1) + ctr_x.unsqueeze(1)
    pred_ctr_y = dy * heights.unsqueeze(1) + ctr_y.unsqueeze(1)
    pred_w = paddle.exp(dw) * widths.unsqueeze(1)
    pred_h = paddle.exp(dh) * heights.unsqueeze(1)

G
Guanghua Yu 已提交
64 65 66 67 68
    pred_boxes = []
    pred_boxes.append(pred_ctr_x - 0.5 * pred_w)
    pred_boxes.append(pred_ctr_y - 0.5 * pred_h)
    pred_boxes.append(pred_ctr_x + 0.5 * pred_w)
    pred_boxes.append(pred_ctr_y + 0.5 * pred_h)
69
    pred_boxes = paddle.stack(pred_boxes, axis=-1)
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92

    return pred_boxes


def expand_bbox(bboxes, scale):
    w_half = (bboxes[:, 2] - bboxes[:, 0]) * .5
    h_half = (bboxes[:, 3] - bboxes[:, 1]) * .5
    x_c = (bboxes[:, 2] + bboxes[:, 0]) * .5
    y_c = (bboxes[:, 3] + bboxes[:, 1]) * .5

    w_half *= scale
    h_half *= scale

    bboxes_exp = np.zeros(bboxes.shape, dtype=np.float32)
    bboxes_exp[:, 0] = x_c - w_half
    bboxes_exp[:, 2] = x_c + w_half
    bboxes_exp[:, 1] = y_c - h_half
    bboxes_exp[:, 3] = y_c + h_half

    return bboxes_exp


def clip_bbox(boxes, im_shape):
W
wangguanzhong 已提交
93
    h, w = im_shape[0], im_shape[1]
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
    x1 = boxes[:, 0].clip(0, w)
    y1 = boxes[:, 1].clip(0, h)
    x2 = boxes[:, 2].clip(0, w)
    y2 = boxes[:, 3].clip(0, h)
    return paddle.stack([x1, y1, x2, y2], axis=1)


def nonempty_bbox(boxes, min_size=0, return_mask=False):
    w = boxes[:, 2] - boxes[:, 0]
    h = boxes[:, 3] - boxes[:, 1]
    mask = paddle.logical_and(w > min_size, w > min_size)
    if return_mask:
        return mask
    keep = paddle.nonzero(mask).flatten()
    return keep


def bbox_area(boxes):
    return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])


def bbox_overlaps(boxes1, boxes2):
W
wangguanzhong 已提交
116 117 118 119 120 121 122 123 124 125
    """
    Calculate overlaps between boxes1 and boxes2

    Args:
        boxes1 (Tensor): boxes with shape [M, 4]
        boxes2 (Tensor): boxes with shape [N, 4]

    Return:
        overlaps (Tensor): overlaps between boxes1 and boxes2 with shape [M, N]
    """
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
    area1 = bbox_area(boxes1)
    area2 = bbox_area(boxes2)

    xy_max = paddle.minimum(
        paddle.unsqueeze(boxes1, 1)[:, :, 2:], boxes2[:, 2:])
    xy_min = paddle.maximum(
        paddle.unsqueeze(boxes1, 1)[:, :, :2], boxes2[:, :2])
    width_height = xy_max - xy_min
    width_height = width_height.clip(min=0)
    inter = width_height.prod(axis=2)

    overlaps = paddle.where(inter > 0, inter /
                            (paddle.unsqueeze(area1, 1) + area2 - inter),
                            paddle.zeros_like(inter))
    return overlaps
W
wangguanzhong 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262


def xywh2xyxy(box):
    x, y, w, h = box
    x1 = x - w * 0.5
    y1 = y - h * 0.5
    x2 = x + w * 0.5
    y2 = y + h * 0.5
    return [x1, y1, x2, y2]


def make_grid(h, w, dtype):
    yv, xv = paddle.meshgrid([paddle.arange(h), paddle.arange(w)])
    return paddle.stack((xv, yv), 2).cast(dtype=dtype)


def decode_yolo(box, anchor, downsample_ratio):
    """decode yolo box

    Args:
        box (list): [x, y, w, h], all have the shape [b, na, h, w, 1]
        anchor (list): anchor with the shape [na, 2]
        downsample_ratio (int): downsample ratio, default 32
        scale (float): scale, default 1.

    Return:
        box (list): decoded box, [x, y, w, h], all have the shape [b, na, h, w, 1]
    """
    x, y, w, h = box
    na, grid_h, grid_w = x.shape[1:4]
    grid = make_grid(grid_h, grid_w, x.dtype).reshape((1, 1, grid_h, grid_w, 2))
    x1 = (x + grid[:, :, :, :, 0:1]) / grid_w
    y1 = (y + grid[:, :, :, :, 1:2]) / grid_h

    anchor = paddle.to_tensor(anchor)
    anchor = paddle.cast(anchor, x.dtype)
    anchor = anchor.reshape((1, na, 1, 1, 2))
    w1 = paddle.exp(w) * anchor[:, :, :, :, 0:1] / (downsample_ratio * grid_w)
    h1 = paddle.exp(h) * anchor[:, :, :, :, 1:2] / (downsample_ratio * grid_h)

    return [x1, y1, w1, h1]


def iou_similarity(box1, box2, eps=1e-9):
    """Calculate iou of box1 and box2

    Args:
        box1 (Tensor): box with the shape [N, M1, 4]
        box2 (Tensor): box with the shape [N, M2, 4]

    Return:
        iou (Tensor): iou between box1 and box2 with the shape [N, M1, M2]
    """
    box1 = box1.unsqueeze(2)  # [N, M1, 4] -> [N, M1, 1, 4]
    box2 = box2.unsqueeze(1)  # [N, M2, 4] -> [N, 1, M2, 4]
    px1y1, px2y2 = box1[:, :, :, 0:2], box1[:, :, :, 2:4]
    gx1y1, gx2y2 = box2[:, :, :, 0:2], box2[:, :, :, 2:4]
    x1y1 = paddle.maximum(px1y1, gx1y1)
    x2y2 = paddle.minimum(px2y2, gx2y2)
    overlap = (x2y2 - x1y1).clip(0).prod(-1)
    area1 = (px2y2 - px1y1).clip(0).prod(-1)
    area2 = (gx2y2 - gx1y1).clip(0).prod(-1)
    union = area1 + area2 - overlap + eps
    return overlap / union


def bbox_iou(box1, box2, giou=False, diou=False, ciou=False, eps=1e-9):
    """calculate the iou of box1 and box2

    Args:
        box1 (list): [x, y, w, h], all have the shape [b, na, h, w, 1]
        box2 (list): [x, y, w, h], all have the shape [b, na, h, w, 1]
        giou (bool): whether use giou or not, default False
        diou (bool): whether use diou or not, default False
        ciou (bool): whether use ciou or not, default False
        eps (float): epsilon to avoid divide by zero

    Return:
        iou (Tensor): iou of box1 and box1, with the shape [b, na, h, w, 1]
    """
    px1, py1, px2, py2 = box1
    gx1, gy1, gx2, gy2 = box2
    x1 = paddle.maximum(px1, gx1)
    y1 = paddle.maximum(py1, gy1)
    x2 = paddle.minimum(px2, gx2)
    y2 = paddle.minimum(py2, gy2)

    overlap = ((x2 - x1).clip(0)) * ((y2 - y1).clip(0))

    area1 = (px2 - px1) * (py2 - py1)
    area1 = area1.clip(0)

    area2 = (gx2 - gx1) * (gy2 - gy1)
    area2 = area2.clip(0)

    union = area1 + area2 - overlap + eps
    iou = overlap / union

    if giou or ciou or diou:
        # convex w, h
        cw = paddle.maximum(px2, gx2) - paddle.minimum(px1, gx1)
        ch = paddle.maximum(py2, gy2) - paddle.minimum(py1, gy1)
        if giou:
            c_area = cw * ch + eps
            return iou - (c_area - union) / c_area
        else:
            # convex diagonal squared
            c2 = cw**2 + ch**2 + eps
            # center distance
            rho2 = ((px1 + px2 - gx1 - gx2)**2 + (py1 + py2 - gy1 - gy2)**2) / 4
            if diou:
                return iou - rho2 / c2
            else:
                w1, h1 = px2 - px1, py2 - py1 + eps
                w2, h2 = gx2 - gx1, gy2 - gy1 + eps
                delta = paddle.atan(w1 / h1) - paddle.atan(w2 / h2)
                v = (4 / math.pi**2) * paddle.pow(delta, 2)
                alpha = v / (1 + eps - iou + v)
                alpha.stop_gradient = True
                return iou - (rho2 / c2 + v * alpha)
    else:
        return iou