mot_jde_infer.py 13.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import time
import yaml
import cv2
import numpy as np
import paddle
from benchmark_utils import PaddleInferBenchmark
22
from preprocess import preprocess
23 24 25 26 27 28 29 30

from tracker import JDETracker
from ppdet.modeling.mot import visualization as mot_vis
from ppdet.modeling.mot.utils import Timer as MOTTimer

from paddle.inference import Config
from paddle.inference import create_predictor
from utils import argsparser, Timer, get_current_memory_mb
31
from infer import Detector, get_test_images, print_arguments, PredictConfig
32 33 34 35 36 37 38 39

# Global dictionary
MOT_SUPPORT_MODELS = {
    'JDE',
    'FairMOT',
}


40
class JDE_Detector(Detector):
41 42 43 44
    """
    Args:
        pred_config (object): config of model, defined by `Config(model_dir)`
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
45
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
46
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
47
        batch_size (int): size of pre batch in inference
48 49 50 51 52 53 54 55 56 57 58 59
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN 
    """

    def __init__(self,
                 pred_config,
                 model_dir,
60
                 device='CPU',
61
                 run_mode='fluid',
62
                 batch_size=1,
63 64 65 66 67 68
                 trt_min_shape=1,
                 trt_max_shape=1088,
                 trt_opt_shape=608,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False):
69 70 71
        super(JDE_Detector, self).__init__(
            pred_config=pred_config,
            model_dir=model_dir,
72
            device=device,
73 74
            run_mode=run_mode,
            batch_size=batch_size,
75 76 77 78 79 80
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn)
81
        assert batch_size == 1, "The JDE Detector only supports batch size=1 now"
82 83 84 85 86
        assert pred_config.tracker, "Tracking model should have tracker"
        tp = pred_config.tracker
        conf_thres = tp['conf_thres'] if 'conf_thres' in tp else 0.
        tracked_thresh = tp['tracked_thresh'] if 'tracked_thresh' in tp else 0.7
        metric_type = tp['metric_type'] if 'metric_type' in tp else 'euclidean'
G
George Ni 已提交
87 88 89 90
        self.tracker = JDETracker(
            conf_thres=conf_thres,
            tracked_thresh=tracked_thresh,
            metric_type=metric_type)
91

92
    def postprocess(self, pred_dets, pred_embs, threshold):
93
        online_targets = self.tracker.update(pred_dets, pred_embs)
94
        if online_targets == []:
95 96 97
            # First few frames, the model may have no tracking results but have
            # detection results,use the detection results instead, and set id -1.
            return [pred_dets[0][:4]], [pred_dets[0][4]], [-1]
98
        online_tlwhs, online_ids = [], []
G
George Ni 已提交
99
        online_scores = []
100 101 102
        for t in online_targets:
            tlwh = t.tlwh
            tid = t.track_id
G
George Ni 已提交
103
            tscore = t.score
104
            if tscore < threshold: continue
105 106 107 108
            vertical = tlwh[2] / tlwh[3] > 1.6
            if tlwh[2] * tlwh[3] > self.tracker.min_box_area and not vertical:
                online_tlwhs.append(tlwh)
                online_ids.append(tid)
G
George Ni 已提交
109 110
                online_scores.append(tscore)
        return online_tlwhs, online_scores, online_ids
111

112
    def predict(self, image_list, threshold=0.5, warmup=0, repeats=1):
113 114
        '''
        Args:
115
            image_list (list): list of image
116 117
            threshold (float): threshold of predicted box' score
        Returns:
118
            online_tlwhs, online_scores, online_ids (np.ndarray)
119 120
        '''
        self.det_times.preprocess_time_s.start()
121
        inputs = self.preprocess(image_list)
122
        self.det_times.preprocess_time_s.end()
G
George Ni 已提交
123

124 125 126 127 128 129
        pred_dets, pred_embs = None, None
        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])

G
George Ni 已提交
130 131 132 133 134 135
        for i in range(warmup):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            pred_dets = boxes_tensor.copy_to_cpu()

136 137 138 139 140 141 142 143 144 145 146
        self.det_times.inference_time_s.start()
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            pred_dets = boxes_tensor.copy_to_cpu()
            embs_tensor = self.predictor.get_output_handle(output_names[1])
            pred_embs = embs_tensor.copy_to_cpu()
        self.det_times.inference_time_s.end(repeats=repeats)

        self.det_times.postprocess_time_s.start()
147 148
        online_tlwhs, online_scores, online_ids = self.postprocess(
            pred_dets, pred_embs, threshold)
149 150
        self.det_times.postprocess_time_s.end()
        self.det_times.img_num += 1
G
George Ni 已提交
151
        return online_tlwhs, online_scores, online_ids
152 153


G
George Ni 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
def write_mot_results(filename, results, data_type='mot'):
    if data_type in ['mot', 'mcmot', 'lab']:
        save_format = '{frame},{id},{x1},{y1},{w},{h},{score},-1,-1,-1\n'
    elif data_type == 'kitti':
        save_format = '{frame} {id} pedestrian 0 0 -10 {x1} {y1} {x2} {y2} -10 -10 -10 -1000 -1000 -1000 -10\n'
    else:
        raise ValueError(data_type)

    with open(filename, 'w') as f:
        for frame_id, tlwhs, tscores, track_ids in results:
            if data_type == 'kitti':
                frame_id -= 1
            for tlwh, score, track_id in zip(tlwhs, tscores, track_ids):
                x1, y1, w, h = tlwh
                x2, y2 = x1 + w, y1 + h
                line = save_format.format(
                    frame=frame_id,
                    id=track_id,
                    x1=x1,
                    y1=y1,
                    x2=x2,
                    y2=y2,
                    w=w,
                    h=h,
                    score=score)
                f.write(line)


G
George Ni 已提交
182 183
def predict_image(detector, image_list):
    results = []
G
George Ni 已提交
184
    image_list.sort()
G
George Ni 已提交
185 186 187
    for i, img_file in enumerate(image_list):
        frame = cv2.imread(img_file)
        if FLAGS.run_benchmark:
188
            detector.predict([frame], FLAGS.threshold, warmup=10, repeats=10)
G
George Ni 已提交
189 190 191 192 193 194 195
            cm, gm, gu = get_current_memory_mb()
            detector.cpu_mem += cm
            detector.gpu_mem += gm
            detector.gpu_util += gu
            print('Test iter {}, file name:{}'.format(i, img_file))
        else:
            online_tlwhs, online_scores, online_ids = detector.predict(
196
                [frame], FLAGS.threshold)
G
George Ni 已提交
197 198 199 200 201
            online_im = mot_vis.plot_tracking(
                frame, online_tlwhs, online_ids, online_scores, frame_id=i)
            if FLAGS.save_images:
                if not os.path.exists(FLAGS.output_dir):
                    os.makedirs(FLAGS.output_dir)
202 203 204 205
                img_name = os.path.split(img_file)[-1]
                out_path = os.path.join(FLAGS.output_dir, img_name)
                cv2.imwrite(out_path, online_im)
                print("save result to: " + out_path)
G
George Ni 已提交
206 207


208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
def predict_video(detector, camera_id):
    if camera_id != -1:
        capture = cv2.VideoCapture(camera_id)
        video_name = 'mot_output.mp4'
    else:
        capture = cv2.VideoCapture(FLAGS.video_file)
        video_name = os.path.split(FLAGS.video_file)[-1]
    fps = 30
    frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
    print('frame_count', frame_count)
    width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
    # yapf: disable
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    # yapf: enable
    if not os.path.exists(FLAGS.output_dir):
        os.makedirs(FLAGS.output_dir)
    out_path = os.path.join(FLAGS.output_dir, video_name)
G
George Ni 已提交
226 227
    if not FLAGS.save_images:
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
228 229
    frame_id = 0
    timer = MOTTimer()
G
George Ni 已提交
230
    results = []
231 232 233 234 235
    while (1):
        ret, frame = capture.read()
        if not ret:
            break
        timer.tic()
G
George Ni 已提交
236
        online_tlwhs, online_scores, online_ids = detector.predict(
237
            [frame], FLAGS.threshold)
238 239
        timer.toc()

G
George Ni 已提交
240 241
        results.append((frame_id + 1, online_tlwhs, online_scores, online_ids))
        fps = 1. / timer.average_time
G
George Ni 已提交
242
        im = mot_vis.plot_tracking(
243 244 245
            frame,
            online_tlwhs,
            online_ids,
G
George Ni 已提交
246
            online_scores,
247
            frame_id=frame_id,
G
George Ni 已提交
248
            fps=fps)
G
George Ni 已提交
249 250 251 252 253
        if FLAGS.save_images:
            save_dir = os.path.join(FLAGS.output_dir, video_name.split('.')[-2])
            if not os.path.exists(save_dir):
                os.makedirs(save_dir)
            cv2.imwrite(
G
George Ni 已提交
254
                os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)), im)
G
George Ni 已提交
255 256
        else:
            writer.write(im)
257 258 259 260 261 262 263 264 265

        if FLAGS.save_mot_txt_per_img:
            save_dir = os.path.join(FLAGS.output_dir, video_name.split('.')[-2])
            if not os.path.exists(save_dir):
                os.makedirs(save_dir)
            result_filename = os.path.join(save_dir,
                                           '{:05d}.txt'.format(frame_id))
            write_mot_results(result_filename, [results[-1]])

266 267 268 269 270 271
        frame_id += 1
        print('detect frame:%d' % (frame_id))
        if camera_id != -1:
            cv2.imshow('Tracking Detection', im)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
G
George Ni 已提交
272
    if FLAGS.save_mot_txts:
G
George Ni 已提交
273 274 275
        result_filename = os.path.join(FLAGS.output_dir,
                                       video_name.split('.')[-2] + '.txt')
        write_mot_results(result_filename, results)
G
George Ni 已提交
276 277 278

    if FLAGS.save_images:
        save_dir = os.path.join(FLAGS.output_dir, video_name.split('.')[-2])
F
Feng Ni 已提交
279 280
        cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg {}'.format(save_dir,
                                                              out_path)
G
George Ni 已提交
281 282 283 284
        os.system(cmd_str)
        print('Save video in {}.'.format(out_path))
    else:
        writer.release()
285 286 287


def main():
G
George Ni 已提交
288
    pred_config = PredictConfig(FLAGS.model_dir)
289
    detector = JDE_Detector(
290 291
        pred_config,
        FLAGS.model_dir,
292
        device=FLAGS.device,
293 294 295 296 297 298 299 300 301 302 303 304
        run_mode=FLAGS.run_mode,
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
        enable_mkldnn=FLAGS.enable_mkldnn)

    # predict from video file or camera video stream
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
        predict_video(detector, FLAGS.camera_id)
    else:
G
George Ni 已提交
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
        # predict from image
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
        predict_image(detector, img_list)
        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
        else:
            mems = {
                'cpu_rss_mb': detector.cpu_mem / len(img_list),
                'gpu_rss_mb': detector.gpu_mem / len(img_list),
                'gpu_util': detector.gpu_util * 100 / len(img_list)
            }
            perf_info = detector.det_times.report(average=True)
            model_dir = FLAGS.model_dir
            mode = FLAGS.run_mode
            model_info = {
                'model_name': model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
            }
            data_info = {
                'batch_size': 1,
                'shape': "dynamic_shape",
                'data_num': perf_info['img_num']
            }
            det_log = PaddleInferBenchmark(detector.config, model_info,
                                           data_info, perf_info, mems)
            det_log('MOT')
331 332 333 334 335 336 337


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
338 339 340
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"
341 342

    main()