pybind.cc 40.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
27
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
28 29 30
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
31
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
34
#include "paddle/fluid/framework/reader.h"
Y
Yi Wang 已提交
35
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
36
#include "paddle/fluid/framework/version.h"
Y
Refine  
Yu Yang 已提交
37
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
D
dzhwinter 已提交
38
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
39
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
40
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
41
#include "paddle/fluid/platform/enforce.h"
42
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
43 44
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
45
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
46 47
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
X
Xin Pan 已提交
48
#include "paddle/fluid/pybind/imperative.h"
49 50
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
51
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
52
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
53

54
#include "paddle/fluid/string/to_string.h"
55

D
Dong Zhihong 已提交
56
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
57
#ifndef _WIN32
Y
Yi Wang 已提交
58
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
59
#endif
Y
Yi Wang 已提交
60 61
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
62 63
#endif

M
minqiyang 已提交
64 65
#include "pybind11/stl.h"

66 67 68 69
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
70 71 72
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

73
namespace paddle {
74
namespace pybind {
75
bool IsCompiledWithCUDA() {
76
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
77 78 79 80 81 82
  return false;
#else
  return true;
#endif
}

Y
update  
Yancey1989 已提交
83
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
84
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
85 86 87 88 89 90
  return true;
#else
  return false;
#endif
}

91
PYBIND11_MODULE(core, m) {
Y
Yu Yang 已提交
92 93 94
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
95
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
96
  m.doc() = "C++ core of PaddlePaddle";
97

98 99 100 101
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

102
  BindException(&m);
Y
Yu Yang 已提交
103

X
Xin Pan 已提交
104 105 106 107 108
  py::class_<imperative::Layer, PyLayer /* <--- trampoline*/> layer(m, "Layer");
  layer.def(py::init<>())
      .def("forward", &imperative::Layer::Forward)
      .def("backward", &imperative::Layer::Backward);

109 110 111
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
112
      .def("_get_dims",
113
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
114
      .def("_set_dims",
Q
qijun 已提交
115
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
116
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
117
           })
Y
yuyang18 已提交
118
      .def("_set_layout",
D
dzhwinter 已提交
119 120 121
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
122
      .def("_alloc_float",
D
dzhwinter 已提交
123
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
124
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
125
           })
Y
yuyang18 已提交
126
      .def("_alloc_float",
Y
Yu Yang 已提交
127
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
128
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
129
           })
Y
yuyang18 已提交
130
      .def("_alloc_int",
Y
Yu Yang 已提交
131
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
132
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
133
           })
Y
yuyang18 已提交
134
      .def("_alloc_int",
D
dzhwinter 已提交
135
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
136
             self.mutable_data<int>(place);
Q
qijun 已提交
137
           })
Y
yuyang18 已提交
138
      .def("_alloc_int",
C
chengduoZH 已提交
139 140 141
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
142
      .def("_alloc_float",
C
chengduoZH 已提交
143 144 145
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
146 147
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
148
      .def("set", PyCPUTensorSetFromArray<double>)
149
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
150
      .def("set", PyCPUTensorSetFromArray<bool>)
151
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
152
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
153
      .def("set", PyCPUTensorSetFromArray<int8_t>)
154
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
155 156
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
157
      .def("set", PyCUDATensorSetFromArray<double>)
158
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
159
      .def("set", PyCUDATensorSetFromArray<bool>)
160
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
161
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
162
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
163 164 165 166 167 168
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
169
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
170
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
171
#endif
172
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
173 174 175 176 177
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
      .def("_dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
178

X
Xin Pan 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
192
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
193
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
194
     columns, hence [5, 2].
X
Xin Pan 已提交
195 196 197

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
198 199
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
223 224
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
225 226 227 228 229 230 231 232 233 234 235 236 237 238
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
239
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
240 241 242 243 244
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
245
      .def("set_lod",
246
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
247
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
248
             LoD new_lod;
249 250
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
251 252
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
253
             self.set_lod(new_lod);
D
dangqingqing 已提交
254
           })
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
           })
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
G
gongweibao 已提交
280
      // Set above comments of set_lod.
281 282 283 284 285 286 287 288 289 290 291 292 293
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
      .def("has_valid_recursive_sequence_lengths", [](LoDTensor &self) -> bool {
        // Check that the lod info is valid and match the outermost
        // dimension of the LoDTensor data
        return CheckLoD(self.lod(), vectorize(self.dims()).front());
D
dangqingqing 已提交
294 295
      });

Q
qijun 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
309 310 311 312 313 314 315 316 317
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
318
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
319
      .def("rows", [](SelectedRows &self) {
320 321 322 323 324
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
325
      });
Q
qijun 已提交
326

327
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
328 329 330

All parameter, weight, gradient are variables in Paddle.
)DOC")
331
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
332
      .def("set_int",
333 334
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
335 336 337 338 339 340 341
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
342
      .def("get_tensor",
343 344
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
345 346
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
347 348 349
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
350 351 352 353 354
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
355 356 357
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
358
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
359 360 361 362 363
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
364
#endif
Y
Refine  
Yu Yang 已提交
365 366 367 368 369
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
370
           py::return_value_policy::reference);
371

Y
Refine  
Yu Yang 已提交
372
  py::class_<framework::ReaderHolder>(m, "Reader", "")
373
      .def("reset", &framework::ReaderHolder::ResetAll);
Y
Refine  
Yu Yang 已提交
374

S
sneaxiy 已提交
375 376 377 378
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
379 380
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
381
      .def("push",
S
sneaxiy 已提交
382
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
383
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
384
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
385
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
386
           })
S
sneaxiy 已提交
387 388 389 390
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
391

S
sneaxiy 已提交
392
  m.def("init_lod_tensor_blocking_queue",
S
sneaxiy 已提交
393
        [](Variable &var, size_t capacity,
S
sneaxiy 已提交
394
           const std::vector<std::vector<int64_t>> &shapes)
S
sneaxiy 已提交
395
            -> std::shared_ptr<LoDTensorBlockingQueue> {
S
sneaxiy 已提交
396 397 398 399 400 401
              std::vector<DDim> dims(shapes.size());
              std::transform(shapes.begin(), shapes.end(), dims.begin(),
                             [](const std::vector<int64_t> &shape) {
                               return make_ddim(shape);
                             });
              auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
402 403
              holder->InitOnce(capacity, dims,
                               FLAGS_reader_queue_speed_test_mode);
S
sneaxiy 已提交
404
              return holder->GetQueue();
S
sneaxiy 已提交
405
            },
S
sneaxiy 已提交
406
        py::return_value_policy::copy);
S
sneaxiy 已提交
407

Q
Qiao Longfei 已提交
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
  py::class_<Scope>(m, "Scope", R"DOC(
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
D
dongzhihong 已提交
428
      .def("var",
429
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
430
             return self.Var(name);
Y
Yu Yang 已提交
431
           },
432
           py::return_value_policy::reference)
433
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
434
      .def(py::init<>())
435
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
436
           py::return_value_policy::reference)
Y
Yu Yang 已提交
437
      .def("drop_kids", &Scope::DropKids);
438

Y
Yu Yang 已提交
439 440
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
441 442
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
443 444 445 446 447 448 449 450 451 452
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
453 454
    return ret_values;
  });
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
471
  m.def("prune", [](const ProgramDesc &origin,
472
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
473
    ProgramDesc prog_with_targets(origin);
474
    for (const auto &t : targets) {
475
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
476
    }
477
    proto::ProgramDesc pruned_desc;
478
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
479
    return new ProgramDesc(pruned_desc);
480
  });
481 482 483 484
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
485 486 487
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
488 489
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
490
  // clang-format off
Y
Yu Yang 已提交
491
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
492 493
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
494
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
495 496 497
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
498
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
499
                      -> paddle::platform::DeviceContext* {
500
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
501
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
502
#else
Q
qijun 已提交
503
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
504
#endif
C
chengduoZH 已提交
505 506 507 508 509 510 511 512 513 514 515
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
516
// clang-format on
P
peizhilin 已提交
517
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
518 519
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
520
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
521
      .def(py::init<int>())
D
dzhwinter 已提交
522
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
523

524 525 526
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
527

C
chengduoZH 已提交
528 529 530 531
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
532 533 534 535 536 537 538
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
539
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
540
             self = gpu_place;
C
chengduoZH 已提交
541 542
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
543 544
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
545
      });
Y
Yu Yang 已提交
546

Y
Yu Yang 已提交
547 548 549
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
550
                    proto::OpDesc desc;
Y
Yu Yang 已提交
551 552 553 554 555
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
556
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
557
                  })
558
      .def("run",
559
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
560 561 562
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
563
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
564 565 566 567 568
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
569 570 571 572 573 574 575
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
576 577
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
578
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
579
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
580 581 582 583
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
584

F
fengjiayi 已提交
585
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
586
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
587
      .def("close", &Executor::Close)
S
sneaxiy 已提交
588 589 590 591 592
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
                     int block_id, bool create_local_scope, bool create_vars) {
        pybind11::gil_scoped_release release;
        self.Run(prog, scope, block_id, create_local_scope, create_vars);
      });
S
sneaxiy 已提交
593

D
dzhwinter 已提交
594
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
595
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
596 597
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
598

599
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
Y
update  
Yancey1989 已提交
600
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
601 602 603 604 605 606
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
607

608
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
609
  m.def("get_fetch_variable", framework::GetFetchVariable);
Q
qijun 已提交
610

X
Xin Pan 已提交
611 612
  m.def("_is_program_version_supported", IsProgramVersionSupported);

613 614 615 616 617
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
618

Y
Yu Yang 已提交
619 620 621 622 623 624 625 626 627
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
628
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
629 630
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

D
dzhwinter 已提交
647 648 649
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
650
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
651
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
652
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
653

P
peizhilin 已提交
654
#ifndef _WIN32
D
dangqingqing 已提交
655 656 657
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
658
#endif
P
peizhilin 已提交
659
#endif
Y
Yu Yang 已提交
660

661 662 663 664
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
665
      .value("kAll", platform::ProfilerState::kAll)
666 667 668 669 670 671 672 673 674 675 676 677 678
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
679
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
680
  m.def("reset_profiler", platform::ResetProfiler);
Y
Yu Yang 已提交
681

682 683
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
684 685 686 687 688
      .def(
          "set_str",
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
X
Xin Pan 已提交
689 690 691
      .def("set_int", [](ir::Pass &self, const std::string &name,
                         int val) { self.Set<const int>(name, new int(val)); })
      .def("type", &ir::Pass::Type);
692

X
fix  
Xin Pan 已提交
693 694
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
695 696 697 698 699 700 701 702 703 704 705 706 707 708
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
709
  // -- python binds for parallel executor.
Y
yuyang18 已提交
710
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
711 712 713 714
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
715 716 717 718 719 720 721 722 723 724 725
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
726 727 728

        )DOC");

Y
yuyang18 已提交
729
  exec_strategy.def(py::init())
Y
yuyang18 已提交
730 731 732 733 734
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
735 736 737 738 739 740 741 742 743 744
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
745
      .def_property(
746 747 748 749
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
750 751 752 753
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
754 755 756 757 758
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
759 760 761 762
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
763 764 765 766 767 768 769
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
770 771 772 773 774 775 776 777 778 779 780
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
781 782 783 784 785 786
              )DOC")
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
787

Y
yuyang18 已提交
788
  exec_strategy.def_property(
Y
yuyang18 已提交
789 790 791 792 793 794 795
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
796 797
      });

C
chengduo 已提交
798 799 800 801
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
802 803 804 805 806 807 808 809 810 811 812
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
813
)DOC");
Y
yuyang18 已提交
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
830
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
831
            self.reduce_ = strategy;
C
chengduo 已提交
832 833 834 835 836 837 838
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
839 840 841 842 843
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
844
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
845
            self.gradient_scale_ = strategy;
C
chengduo 已提交
846 847 848 849 850 851
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
852 853 854 855
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
856
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
857
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
858 859 860 861
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
F
fengjiayi 已提交
862 863 864
      .def_property(
          "enable_data_balance",
          [](const BuildStrategy &self) { return self.enable_data_balance_; },
C
chengduo 已提交
865
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
866
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
867 868
            self.enable_data_balance_ = b;
          })  // FIXME(chengudo): enable_data_balance seems not important
S
sneaxiy 已提交
869 870 871 872 873 874
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
875
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
876 877 878 879 880 881 882 883 884
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
885
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
886 887 888
            self.remove_unnecessary_lock_ = b;
          },
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default False.)DOC")
889 890 891 892 893 894
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
            self.num_trainers_ = num_trainers;
          })
C
chengduo 已提交
895 896 897 898 899 900
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
901
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
902 903 904 905 906
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
907
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
908
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
909 910 911 912 913
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
914 915 916 917

  pe.def(py::init<const std::vector<platform::Place> &,
                  const std::unordered_set<std::string> &,
                  const std::unordered_set<std::string> &, const ProgramDesc &,
Y
yuyang18 已提交
918
                  const std::string &, Scope *, std::vector<Scope *> &,
919 920
                  const ExecutionStrategy &, const BuildStrategy &, size_t,
                  size_t>())
Y
Yu Yang 已提交
921 922 923 924
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
925 926 927 928 929
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
930 931 932 933
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
934 935 936 937 938 939
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
940

941
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
942
  BindAsyncExecutor(&m);
L
Luo Tao 已提交
943
}
944
}  // namespace pybind
945
}  // namespace paddle