yolo_head.py 19.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from paddle import fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.regularizer import L2Decay

D
dengkaipeng 已提交
23
from ppdet.modeling.ops import MultiClassNMS, CARAFEUpsample
K
Kaipeng Deng 已提交
24
from ppdet.modeling.losses.yolo_loss import YOLOv3Loss
25
from ppdet.core.workspace import register
26
from ppdet.modeling.ops import DropBlock
L
lxastro 已提交
27
from .iou_aware import get_iou_aware_score
W
wangguanzhong 已提交
28 29 30 31
try:
    from collections.abc import Sequence
except Exception:
    from collections import Sequence
W
wangguanzhong 已提交
32
from ppdet.utils.check import check_version
33

W
wangguanzhong 已提交
34
__all__ = ['YOLOv3Head', 'YOLOv4Head']
35 36 37 38 39 40 41 42 43 44 45 46 47 48


@register
class YOLOv3Head(object):
    """
    Head block for YOLOv3 network

    Args:
        norm_decay (float): weight decay for normalization layer weights
        num_classes (int): number of output classes
        anchors (list): anchors
        anchor_masks (list): anchor masks
        nms (object): an instance of `MultiClassNMS`
    """
K
Kaipeng Deng 已提交
49
    __inject__ = ['yolo_loss', 'nms']
50
    __shared__ = ['num_classes', 'weight_prefix_name']
51 52 53 54 55 56 57

    def __init__(self,
                 norm_decay=0.,
                 num_classes=80,
                 anchors=[[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
                          [59, 119], [116, 90], [156, 198], [373, 326]],
                 anchor_masks=[[6, 7, 8], [3, 4, 5], [0, 1, 2]],
D
dengkaipeng 已提交
58
                 upsample='nearest',
59
                 drop_block=False,
L
lxastro 已提交
60 61
                 iou_aware=False,
                 iou_aware_factor=0.4,
62 63
                 block_size=3,
                 keep_prob=0.9,
K
Kaipeng Deng 已提交
64
                 yolo_loss="YOLOv3Loss",
65 66 67 68 69
                 nms=MultiClassNMS(
                     score_threshold=0.01,
                     nms_top_k=1000,
                     keep_top_k=100,
                     nms_threshold=0.45,
70
                     background_label=-1).__dict__,
W
wangguanzhong 已提交
71 72
                 weight_prefix_name='',
                 downsample=[32, 16, 8],
W
wangguanzhong 已提交
73 74
                 scale_x_y=1.0,
                 clip_bbox=True):
W
wangguanzhong 已提交
75
        check_version('2.0.0')
76 77 78
        self.norm_decay = norm_decay
        self.num_classes = num_classes
        self.anchor_masks = anchor_masks
D
dengkaipeng 已提交
79
        self.upsample = upsample
80
        self._parse_anchors(anchors)
K
Kaipeng Deng 已提交
81
        self.yolo_loss = yolo_loss
82
        self.nms = nms
83
        self.prefix_name = weight_prefix_name
84
        self.drop_block = drop_block
L
lxastro 已提交
85 86
        self.iou_aware = iou_aware
        self.iou_aware_factor = iou_aware_factor
87 88
        self.block_size = block_size
        self.keep_prob = keep_prob
89 90
        if isinstance(nms, dict):
            self.nms = MultiClassNMS(**nms)
W
wangguanzhong 已提交
91
        self.downsample = downsample
W
wangguanzhong 已提交
92
        self.scale_x_y = scale_x_y
W
wangguanzhong 已提交
93
        self.clip_bbox = clip_bbox
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153

    def _conv_bn(self,
                 input,
                 ch_out,
                 filter_size,
                 stride,
                 padding,
                 act='leaky',
                 is_test=True,
                 name=None):
        conv = fluid.layers.conv2d(
            input=input,
            num_filters=ch_out,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            act=None,
            param_attr=ParamAttr(name=name + ".conv.weights"),
            bias_attr=False)

        bn_name = name + ".bn"
        bn_param_attr = ParamAttr(
            regularizer=L2Decay(self.norm_decay), name=bn_name + '.scale')
        bn_bias_attr = ParamAttr(
            regularizer=L2Decay(self.norm_decay), name=bn_name + '.offset')
        out = fluid.layers.batch_norm(
            input=conv,
            act=None,
            param_attr=bn_param_attr,
            bias_attr=bn_bias_attr,
            moving_mean_name=bn_name + '.mean',
            moving_variance_name=bn_name + '.var')

        if act == 'leaky':
            out = fluid.layers.leaky_relu(x=out, alpha=0.1)
        return out

    def _detection_block(self, input, channel, is_test=True, name=None):
        assert channel % 2 == 0, \
            "channel {} cannot be divided by 2 in detection block {}" \
            .format(channel, name)

        conv = input
        for j in range(2):
            conv = self._conv_bn(
                conv,
                channel,
                filter_size=1,
                stride=1,
                padding=0,
                is_test=is_test,
                name='{}.{}.0'.format(name, j))
            conv = self._conv_bn(
                conv,
                channel * 2,
                filter_size=3,
                stride=1,
                padding=1,
                is_test=is_test,
                name='{}.{}.1'.format(name, j))
154 155 156 157 158 159 160 161 162 163 164 165 166
            if self.drop_block and j == 0 and channel != 512:
                conv = DropBlock(
                    conv,
                    block_size=self.block_size,
                    keep_prob=self.keep_prob,
                    is_test=is_test)

        if self.drop_block and channel == 512:
            conv = DropBlock(
                conv,
                block_size=self.block_size,
                keep_prob=self.keep_prob,
                is_test=is_test)
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
        route = self._conv_bn(
            conv,
            channel,
            filter_size=1,
            stride=1,
            padding=0,
            is_test=is_test,
            name='{}.2'.format(name))
        tip = self._conv_bn(
            route,
            channel * 2,
            filter_size=3,
            stride=1,
            padding=1,
            is_test=is_test,
            name='{}.tip'.format(name))
        return route, tip

D
dengkaipeng 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
    def _upsample(self, input, scale=2, upsample='nearest', name=None):
        upsample = upsample.copy()
        if upsample == 'nearest':
            out = fluid.layers.resize_nearest(
                input=input, scale=float(scale), name=name)
        else:
            print("upsample", upsample)
            import sys
            sys.stdout.flush()
            assert isinstance(
                upsample, dict), "Unknown upsample method: {}".format(upsample)
            assert upsample['type'] in [
                'carafe'
            ], 'Unknown upsample type {}'.format(upsample['type'])

            upsample_type = upsample.pop('type')
            upsample['name'] = name

            if upsample_type.lower() == 'carafe':
                up = CARAFEUpsample(**upsample)
                out = up(input)
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
        return out

    def _parse_anchors(self, anchors):
        """
        Check ANCHORS/ANCHOR_MASKS in config and parse mask_anchors

        """
        self.anchors = []
        self.mask_anchors = []

        assert len(anchors) > 0, "ANCHORS not set."
        assert len(self.anchor_masks) > 0, "ANCHOR_MASKS not set."

        for anchor in anchors:
            assert len(anchor) == 2, "anchor {} len should be 2".format(anchor)
            self.anchors.extend(anchor)

        anchor_num = len(anchors)
        for masks in self.anchor_masks:
            self.mask_anchors.append([])
            for mask in masks:
                assert mask < anchor_num, "anchor mask index overflow"
                self.mask_anchors[-1].extend(anchors[mask])

    def _get_outputs(self, input, is_train=True):
        """
        Get YOLOv3 head output

        Args:
            input (list): List of Variables, output of backbone stages
            is_train (bool): whether in train or test mode

        Returns:
            outputs (list): Variables of each output layer
        """

        outputs = []

        # get last out_layer_num blocks in reverse order
        out_layer_num = len(self.anchor_masks)
        blocks = input[-1:-out_layer_num - 1:-1]

        route = None
        for i, block in enumerate(blocks):
            if i > 0:  # perform concat in first 2 detection_block
                block = fluid.layers.concat(input=[route, block], axis=1)
            route, tip = self._detection_block(
                block,
                channel=512 // (2**i),
                is_test=(not is_train),
256
                name=self.prefix_name + "yolo_block.{}".format(i))
257 258

            # out channel number = mask_num * (5 + class_num)
L
lxastro 已提交
259 260 261 262
            if self.iou_aware:
                num_filters = len(self.anchor_masks[i]) * (self.num_classes + 6)
            else:
                num_filters = len(self.anchor_masks[i]) * (self.num_classes + 5)
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
            with fluid.name_scope('yolo_output'):
                block_out = fluid.layers.conv2d(
                    input=tip,
                    num_filters=num_filters,
                    filter_size=1,
                    stride=1,
                    padding=0,
                    act=None,
                    param_attr=ParamAttr(
                        name=self.prefix_name +
                        "yolo_output.{}.conv.weights".format(i)),
                    bias_attr=ParamAttr(
                        regularizer=L2Decay(0.),
                        name=self.prefix_name +
                        "yolo_output.{}.conv.bias".format(i)))
                outputs.append(block_out)
279 280 281 282 283 284 285 286 287 288

            if i < len(blocks) - 1:
                # do not perform upsample in the last detection_block
                route = self._conv_bn(
                    input=route,
                    ch_out=256 // (2**i),
                    filter_size=1,
                    stride=1,
                    padding=0,
                    is_test=(not is_train),
289
                    name=self.prefix_name + "yolo_transition.{}".format(i))
290
                # upsample
D
dengkaipeng 已提交
291 292 293 294
                route = self._upsample(
                    route,
                    upsample=self.upsample,
                    name="yolo_upsample.{}".format(i))
295 296 297

        return outputs

K
Kaipeng Deng 已提交
298
    def get_loss(self, input, gt_box, gt_label, gt_score, targets):
299 300 301 302 303 304 305 306
        """
        Get final loss of network of YOLOv3.

        Args:
            input (list): List of Variables, output of backbone stages
            gt_box (Variable): The ground-truth boudding boxes.
            gt_label (Variable): The ground-truth class labels.
            gt_score (Variable): The ground-truth boudding boxes mixup scores.
K
Kaipeng Deng 已提交
307 308
            targets ([Variables]): List of Variables, the targets for yolo
                                   loss calculatation.
309 310 311 312 313 314 315

        Returns:
            loss (Variable): The loss Variable of YOLOv3 network.

        """
        outputs = self._get_outputs(input, is_train=True)

K
Kaipeng Deng 已提交
316 317 318 319
        return self.yolo_loss(outputs, gt_box, gt_label, gt_score, targets,
                              self.anchors, self.anchor_masks,
                              self.mask_anchors, self.num_classes,
                              self.prefix_name)
320

321
    def get_prediction(self, input, im_size):
322 323 324 325 326
        """
        Get prediction result of YOLOv3 network

        Args:
            input (list): List of Variables, output of backbone stages
327
            im_size (Variable): Variable of size([h, w]) of each image
328 329 330 331 332 333 334 335 336 337 338

        Returns:
            pred (Variable): The prediction result after non-max suppress.

        """

        outputs = self._get_outputs(input, is_train=False)

        boxes = []
        scores = []
        for i, output in enumerate(outputs):
L
lxastro 已提交
339 340 341 342 343
            if self.iou_aware:
                output = get_iou_aware_score(output,
                                             len(self.anchor_masks[i]),
                                             self.num_classes,
                                             self.iou_aware_factor)
W
wangguanzhong 已提交
344 345
            scale_x_y = self.scale_x_y if not isinstance(
                self.scale_x_y, Sequence) else self.scale_x_y[i]
346 347
            box, score = fluid.layers.yolo_box(
                x=output,
348
                img_size=im_size,
349 350 351
                anchors=self.mask_anchors[i],
                class_num=self.num_classes,
                conf_thresh=self.nms.score_threshold,
W
wangguanzhong 已提交
352 353
                downsample_ratio=self.downsample[i],
                name=self.prefix_name + "yolo_box" + str(i),
W
wangguanzhong 已提交
354 355
                clip_bbox=self.clip_bbox,
                scale_x_y=scale_x_y)
356 357 358 359 360 361 362
            boxes.append(box)
            scores.append(fluid.layers.transpose(score, perm=[0, 2, 1]))

        yolo_boxes = fluid.layers.concat(boxes, axis=1)
        yolo_scores = fluid.layers.concat(scores, axis=2)
        pred = self.nms(bboxes=yolo_boxes, scores=yolo_scores)
        return {'bbox': pred}
W
wangguanzhong 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375 376


@register
class YOLOv4Head(YOLOv3Head):
    """
    Head block for YOLOv4 network

    Args:
        anchors (list): anchors
        anchor_masks (list): anchor masks
        nms (object): an instance of `MultiClassNMS`
        spp_stage (int): apply spp on which stage.
        num_classes (int): number of output classes
        downsample (list): downsample ratio for each yolo_head
W
wangguanzhong 已提交
377
        scale_x_y (list): scale the center point of bbox at each stage
W
wangguanzhong 已提交
378 379 380 381
    """
    __inject__ = ['nms', 'yolo_loss']
    __shared__ = ['num_classes', 'weight_prefix_name']

W
wangguanzhong 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394 395
    def __init__(self,
                 anchors=[[12, 16], [19, 36], [40, 28], [36, 75], [76, 55],
                          [72, 146], [142, 110], [192, 243], [459, 401]],
                 anchor_masks=[[0, 1, 2], [3, 4, 5], [6, 7, 8]],
                 nms=MultiClassNMS(
                     score_threshold=0.01,
                     nms_top_k=-1,
                     keep_top_k=-1,
                     nms_threshold=0.45,
                     background_label=-1).__dict__,
                 spp_stage=5,
                 num_classes=80,
                 weight_prefix_name='',
                 downsample=[8, 16, 32],
W
wangguanzhong 已提交
396
                 scale_x_y=1.0,
W
wangguanzhong 已提交
397 398 399 400
                 yolo_loss="YOLOv3Loss",
                 iou_aware=False,
                 iou_aware_factor=0.4,
                 clip_bbox=False):
W
wangguanzhong 已提交
401 402 403 404 405 406 407 408 409 410
        super(YOLOv4Head, self).__init__(
            anchors=anchors,
            anchor_masks=anchor_masks,
            nms=nms,
            num_classes=num_classes,
            weight_prefix_name=weight_prefix_name,
            downsample=downsample,
            scale_x_y=scale_x_y,
            yolo_loss=yolo_loss,
            iou_aware=iou_aware,
W
wangguanzhong 已提交
411
            iou_aware_factor=iou_aware_factor,
W
wangguanzhong 已提交
412
            clip_bbox=clip_bbox)
W
wangguanzhong 已提交
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
        self.spp_stage = spp_stage

    def _upsample(self, input, scale=2, name=None):
        out = fluid.layers.resize_nearest(
            input=input, scale=float(scale), name=name)
        return out

    def max_pool(self, input, size):
        pad = [(size - 1) // 2] * 2
        return fluid.layers.pool2d(input, size, 'max', pool_padding=pad)

    def spp(self, input):
        branch_a = self.max_pool(input, 13)
        branch_b = self.max_pool(input, 9)
        branch_c = self.max_pool(input, 5)
        out = fluid.layers.concat([branch_a, branch_b, branch_c, input], axis=1)
        return out

    def stack_conv(self,
                   input,
                   ch_list=[512, 1024, 512],
                   filter_list=[1, 3, 1],
                   stride=1,
                   name=None):
        conv = input
        for i, (ch_out, f_size) in enumerate(zip(ch_list, filter_list)):
            padding = 1 if f_size == 3 else 0
            conv = self._conv_bn(
                conv,
                ch_out=ch_out,
                filter_size=f_size,
                stride=stride,
                padding=padding,
                name='{}.{}'.format(name, i))
        return conv

    def spp_module(self, input, name=None):
        conv = self.stack_conv(input, name=name + '.stack_conv.0')
        spp_out = self.spp(conv)
        conv = self.stack_conv(spp_out, name=name + '.stack_conv.1')
        return conv

    def pan_module(self, input, filter_list, name=None):
        for i in range(1, len(input)):
            ch_out = input[i].shape[1] // 2
            conv_left = self._conv_bn(
                input[i],
                ch_out=ch_out,
                filter_size=1,
                stride=1,
                padding=0,
                name=name + '.{}.left'.format(i))
            ch_out = input[i - 1].shape[1] // 2
            conv_right = self._conv_bn(
                input[i - 1],
                ch_out=ch_out,
                filter_size=1,
                stride=1,
                padding=0,
                name=name + '.{}.right'.format(i))
            conv_right = self._upsample(conv_right)
            pan_out = fluid.layers.concat([conv_left, conv_right], axis=1)
            ch_list = [pan_out.shape[1] // 2 * k for k in [1, 2, 1, 2, 1]]
            input[i] = self.stack_conv(
                pan_out,
                ch_list=ch_list,
                filter_list=filter_list,
                name=name + '.stack_conv.{}'.format(i))
        return input

    def _get_outputs(self, input, is_train=True):
        outputs = []
        filter_list = [1, 3, 1, 3, 1]
        spp_stage = len(input) - self.spp_stage
        # get last out_layer_num blocks in reverse order
        out_layer_num = len(self.anchor_masks)
        blocks = input[-1:-out_layer_num - 1:-1]
        blocks[spp_stage] = self.spp_module(
            blocks[spp_stage], name=self.prefix_name + "spp_module")
        blocks = self.pan_module(
            blocks,
            filter_list=filter_list,
            name=self.prefix_name + 'pan_module')

        # reverse order back to input
        blocks = blocks[::-1]

        route = None
        for i, block in enumerate(blocks):
            if i > 0:  # perform concat in first 2 detection_block
                route = self._conv_bn(
                    route,
                    ch_out=route.shape[1] * 2,
                    filter_size=3,
                    stride=2,
                    padding=1,
                    name=self.prefix_name + 'yolo_block.route.{}'.format(i))
                block = fluid.layers.concat(input=[route, block], axis=1)
                ch_list = [block.shape[1] // 2 * k for k in [1, 2, 1, 2, 1]]
                block = self.stack_conv(
                    block,
                    ch_list=ch_list,
                    filter_list=filter_list,
                    name=self.prefix_name +
                    'yolo_block.stack_conv.{}'.format(i))
            route = block

            block_out = self._conv_bn(
                block,
                ch_out=block.shape[1] * 2,
                filter_size=3,
                stride=1,
                padding=1,
                name=self.prefix_name + 'yolo_output.{}.conv.0'.format(i))

            if self.iou_aware:
                num_filters = len(self.anchor_masks[i]) * (self.num_classes + 6)
            else:
                num_filters = len(self.anchor_masks[i]) * (self.num_classes + 5)
            block_out = fluid.layers.conv2d(
                input=block_out,
                num_filters=num_filters,
                filter_size=1,
                stride=1,
                padding=0,
                act=None,
                param_attr=ParamAttr(name=self.prefix_name +
                                     "yolo_output.{}.conv.1.weights".format(i)),
                bias_attr=ParamAttr(
                    regularizer=L2Decay(0.),
                    name=self.prefix_name +
                    "yolo_output.{}.conv.1.bias".format(i)))
            outputs.append(block_out)

        return outputs