Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
d98eef2e
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d98eef2e
编写于
6月 01, 2020
作者:
D
dengkaipeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add CARAFE upsample.
上级
8a95c4b2
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
198 addition
and
10 deletion
+198
-10
configs/yolov3_darknet_carafe.yml
configs/yolov3_darknet_carafe.yml
+71
-0
ppdet/modeling/anchor_heads/yolo_head.py
ppdet/modeling/anchor_heads/yolo_head.py
+28
-5
ppdet/modeling/ops.py
ppdet/modeling/ops.py
+99
-5
未找到文件。
configs/yolov3_darknet_carafe.yml
0 → 100644
浏览文件 @
d98eef2e
architecture
:
YOLOv3
use_gpu
:
true
max_iters
:
500000
log_smooth_window
:
20
save_dir
:
output
snapshot_iter
:
10000
metric
:
COCO
pretrain_weights
:
https://paddle-imagenet-models-name.bj.bcebos.com/DarkNet53_pretrained.tar
weights
:
output/yolov3_darknet/model_final
num_classes
:
80
use_fine_grained_loss
:
false
YOLOv3
:
backbone
:
DarkNet
yolo_head
:
YOLOv3Head
DarkNet
:
norm_type
:
sync_bn
norm_decay
:
0.
depth
:
53
YOLOv3Head
:
anchor_masks
:
[[
6
,
7
,
8
],
[
3
,
4
,
5
],
[
0
,
1
,
2
]]
anchors
:
[[
10
,
13
],
[
16
,
30
],
[
33
,
23
],
[
30
,
61
],
[
62
,
45
],
[
59
,
119
],
[
116
,
90
],
[
156
,
198
],
[
373
,
326
]]
norm_decay
:
0.
yolo_loss
:
YOLOv3Loss
upsample
:
type
:
carafe
scale
:
2
kernel_size
:
3
group_size
:
5
nms
:
background_label
:
-1
keep_top_k
:
100
nms_threshold
:
0.45
nms_top_k
:
1000
normalized
:
false
score_threshold
:
0.01
YOLOv3Loss
:
# batch_size here is only used for fine grained loss, not used
# for training batch_size setting, training batch_size setting
# is in configs/yolov3_reader.yml TrainReader.batch_size, batch
# size here should be set as same value as TrainReader.batch_size
batch_size
:
8
ignore_thresh
:
0.7
label_smooth
:
true
LearningRate
:
base_lr
:
0.001
schedulers
:
-
!PiecewiseDecay
gamma
:
0.1
milestones
:
-
400000
-
450000
-
!LinearWarmup
start_factor
:
0.
steps
:
4000
OptimizerBuilder
:
optimizer
:
momentum
:
0.9
type
:
Momentum
regularizer
:
factor
:
0.0005
type
:
L2
_READER_
:
'
yolov3_reader.yml'
ppdet/modeling/anchor_heads/yolo_head.py
浏览文件 @
d98eef2e
...
...
@@ -20,7 +20,7 @@ from paddle import fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.regularizer
import
L2Decay
from
ppdet.modeling.ops
import
MultiClassNMS
from
ppdet.modeling.ops
import
MultiClassNMS
,
CARAFEUpsample
from
ppdet.modeling.losses.yolo_loss
import
YOLOv3Loss
from
ppdet.core.workspace
import
register
from
ppdet.modeling.ops
import
DropBlock
...
...
@@ -55,6 +55,7 @@ class YOLOv3Head(object):
anchors
=
[[
10
,
13
],
[
16
,
30
],
[
33
,
23
],
[
30
,
61
],
[
62
,
45
],
[
59
,
119
],
[
116
,
90
],
[
156
,
198
],
[
373
,
326
]],
anchor_masks
=
[[
6
,
7
,
8
],
[
3
,
4
,
5
],
[
0
,
1
,
2
]],
upsample
=
'nearest'
,
drop_block
=
False
,
iou_aware
=
False
,
iou_aware_factor
=
0.4
,
...
...
@@ -75,6 +76,7 @@ class YOLOv3Head(object):
self
.
norm_decay
=
norm_decay
self
.
num_classes
=
num_classes
self
.
anchor_masks
=
anchor_masks
self
.
upsample
=
upsample
self
.
_parse_anchors
(
anchors
)
self
.
yolo_loss
=
yolo_loss
self
.
nms
=
nms
...
...
@@ -180,9 +182,27 @@ class YOLOv3Head(object):
name
=
'{}.tip'
.
format
(
name
))
return
route
,
tip
def
_upsample
(
self
,
input
,
scale
=
2
,
name
=
None
):
out
=
fluid
.
layers
.
resize_nearest
(
input
=
input
,
scale
=
float
(
scale
),
name
=
name
)
def
_upsample
(
self
,
input
,
scale
=
2
,
upsample
=
'nearest'
,
name
=
None
):
upsample
=
upsample
.
copy
()
if
upsample
==
'nearest'
:
out
=
fluid
.
layers
.
resize_nearest
(
input
=
input
,
scale
=
float
(
scale
),
name
=
name
)
else
:
print
(
"upsample"
,
upsample
)
import
sys
sys
.
stdout
.
flush
()
assert
isinstance
(
upsample
,
dict
),
"Unknown upsample method: {}"
.
format
(
upsample
)
assert
upsample
[
'type'
]
in
[
'carafe'
],
'Unknown upsample type {}'
.
format
(
upsample
[
'type'
])
upsample_type
=
upsample
.
pop
(
'type'
)
upsample
[
'name'
]
=
name
if
upsample_type
.
lower
()
==
'carafe'
:
up
=
CARAFEUpsample
(
**
upsample
)
out
=
up
(
input
)
return
out
def
_parse_anchors
(
self
,
anchors
):
...
...
@@ -268,7 +288,10 @@ class YOLOv3Head(object):
is_test
=
(
not
is_train
),
name
=
self
.
prefix_name
+
"yolo_transition.{}"
.
format
(
i
))
# upsample
route
=
self
.
_upsample
(
route
)
route
=
self
.
_upsample
(
route
,
upsample
=
self
.
upsample
,
name
=
"yolo_upsample.{}"
.
format
(
i
))
return
outputs
...
...
ppdet/modeling/ops.py
浏览文件 @
d98eef2e
...
...
@@ -26,11 +26,26 @@ from ppdet.core.workspace import register, serializable
from
ppdet.utils.bbox_utils
import
bbox_overlaps
,
box_to_delta
__all__
=
[
'AnchorGenerator'
,
'AnchorGrid'
,
'DropBlock'
,
'RPNTargetAssign'
,
'GenerateProposals'
,
'MultiClassNMS'
,
'BBoxAssigner'
,
'MaskAssigner'
,
'RoIAlign'
,
'RoIPool'
,
'MultiBoxHead'
,
'SSDLiteMultiBoxHead'
,
'SSDOutputDecoder'
,
'RetinaTargetAssign'
,
'RetinaOutputDecoder'
,
'ConvNorm'
,
'DeformConvNorm'
,
'MultiClassSoftNMS'
,
'LibraBBoxAssigner'
'AnchorGenerator'
,
'AnchorGrid'
,
'DropBlock'
,
'RPNTargetAssign'
,
'GenerateProposals'
,
'MultiClassNMS'
,
'BBoxAssigner'
,
'MaskAssigner'
,
'RoIAlign'
,
'RoIPool'
,
'MultiBoxHead'
,
'SSDLiteMultiBoxHead'
,
'SSDOutputDecoder'
,
'RetinaTargetAssign'
,
'RetinaOutputDecoder'
,
'ConvNorm'
,
'DeformConvNorm'
,
'MultiClassSoftNMS'
,
'LibraBBoxAssigner'
,
'CARAFEUpsample'
,
]
...
...
@@ -53,6 +68,31 @@ def _conv_offset(input, filter_size, stride, padding, act=None, name=None):
return
out
def
_conv_bn
(
input
,
ch_out
,
filter_size
,
stride
,
padding
,
act
=
None
,
name
=
None
):
conv
=
fluid
.
layers
.
conv2d
(
input
=
input
,
num_filters
=
ch_out
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
padding
,
act
=
None
,
param_attr
=
ParamAttr
(
name
=
name
+
".conv.weights"
),
bias_attr
=
False
)
bn_name
=
name
+
".bn"
bn_param_attr
=
ParamAttr
(
regularizer
=
L2Decay
(
0.
),
name
=
bn_name
+
'.scale'
)
bn_bias_attr
=
ParamAttr
(
regularizer
=
L2Decay
(
0.
),
name
=
bn_name
+
'.offset'
)
out
=
fluid
.
layers
.
batch_norm
(
input
=
conv
,
act
=
act
,
param_attr
=
bn_param_attr
,
bias_attr
=
bn_bias_attr
,
moving_mean_name
=
bn_name
+
'.mean'
,
moving_variance_name
=
bn_name
+
'.var'
)
return
out
def
DeformConvNorm
(
input
,
num_filters
,
filter_size
,
...
...
@@ -1497,3 +1537,57 @@ class RetinaOutputDecoder(object):
self
.
nms_top_k
=
pre_nms_top_n
self
.
keep_top_k
=
detections_per_im
self
.
nms_eta
=
nms_eta
@
register
@
serializable
class
CARAFEUpsample
(
object
):
def
__init__
(
self
,
scale
=
2
,
mid_channels
=
64
,
kernel_size
=
3
,
group_size
=
3
,
name
=
None
):
super
(
CARAFEUpsample
,
self
).
__init__
()
self
.
scale
=
scale
self
.
mid_channels
=
mid_channels
self
.
kernel_size
=
kernel_size
self
.
group_size
=
group_size
self
.
name
=
name
def
__call__
(
self
,
input
):
weight
=
_conv_bn
(
input
,
self
.
mid_channels
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
act
=
'relu'
,
name
=
self
.
name
+
'.compresser'
)
weight
=
_conv_bn
(
weight
,
(
self
.
scale
*
self
.
group_size
)
**
2
,
filter_size
=
self
.
kernel_size
,
stride
=
1
,
padding
=
(
self
.
kernel_size
-
1
)
//
2
,
act
=
None
,
name
=
self
.
name
+
'.encoder'
)
weight
=
fluid
.
layers
.
pixel_shuffle
(
weight
,
upscale_factor
=
self
.
scale
)
weight
=
fluid
.
layers
.
softmax
(
weight
,
axis
=
1
)
weight
=
fluid
.
layers
.
unsqueeze
(
weight
,
axes
=
[
1
])
out
=
fluid
.
layers
.
resize_nearest
(
input
,
scale
=
float
(
self
.
scale
))
out
=
fluid
.
layers
.
unfold
(
out
,
self
.
group_size
,
dilations
=
self
.
scale
,
paddings
=
(
self
.
group_size
-
1
)
//
2
*
self
.
scale
)
input_shape
=
fluid
.
layers
.
shape
(
input
)
b
=
input_shape
[
0
]
h
=
input_shape
[
2
]
w
=
input_shape
[
3
]
out
=
fluid
.
layers
.
reshape
(
out
,
[
b
,
int
(
input
.
shape
[
1
]),
-
1
,
h
*
self
.
scale
,
w
*
self
.
scale
])
out
=
fluid
.
layers
.
reduce_sum
(
weight
*
out
,
dim
=
2
)
return
out
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录