jde_tracker.py 14.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
15
This code is based on https://github.com/Zhongdao/Towards-Realtime-MOT/blob/master/tracker/multitracker.py
16 17
"""

18 19
import numpy as np
from collections import defaultdict
20 21

from ..matching import jde_matching as matching
22 23
from ..motion import KalmanFilter
from .base_jde_tracker import TrackState, STrack
24 25 26 27 28 29 30 31 32 33 34 35
from .base_jde_tracker import joint_stracks, sub_stracks, remove_duplicate_stracks

from ppdet.core.workspace import register, serializable
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)

__all__ = ['JDETracker']


@register
@serializable
class JDETracker(object):
36
    __shared__ = ['num_classes']
37
    """
38
    JDE tracker, support single class and multi classes
39 40

    Args:
41
        num_classes (int): the number of classes
42 43 44
        det_thresh (float): threshold of detection score
        track_buffer (int): buffer for tracker
        min_box_area (int): min box area to filter out low quality boxes
F
Feng Ni 已提交
45
        vertical_ratio (float): w/h, the vertical ratio of the bbox to filter
46 47
            bad results. If set <0 means no need to filter bboxes,usually set
            1.6 for pedestrian tracking.
48 49 50 51 52 53
        tracked_thresh (float): linear assignment threshold of tracked 
            stracks and detections
        r_tracked_thresh (float): linear assignment threshold of 
            tracked stracks and unmatched detections
        unconfirmed_thresh (float): linear assignment threshold of 
            unconfirmed stracks and unmatched detections
54
        motion (str): motion model, KalmanFilter as default
F
FlyingQianMM 已提交
55 56 57
        conf_thres (float): confidence threshold for tracking
        metric_type (str): either "euclidean" or "cosine", the distance metric 
            used for measurement to track association.
58 59 60
    """

    def __init__(self,
F
Feng Ni 已提交
61
                 use_byte=False,
62
                 num_classes=1,
63 64 65
                 det_thresh=0.3,
                 track_buffer=30,
                 min_box_area=200,
F
Feng Ni 已提交
66
                 vertical_ratio=1.6,
67 68 69
                 tracked_thresh=0.7,
                 r_tracked_thresh=0.5,
                 unconfirmed_thresh=0.7,
F
FlyingQianMM 已提交
70
                 conf_thres=0,
F
Feng Ni 已提交
71 72 73
                 match_thres=0.8,
                 low_conf_thres=0.2,
                 motion='KalmanFilter',
F
FlyingQianMM 已提交
74
                 metric_type='euclidean'):
F
Feng Ni 已提交
75
        self.use_byte = use_byte
76
        self.num_classes = num_classes
F
Feng Ni 已提交
77
        self.det_thresh = det_thresh if not use_byte else conf_thres + 0.1
78 79
        self.track_buffer = track_buffer
        self.min_box_area = min_box_area
F
Feng Ni 已提交
80 81
        self.vertical_ratio = vertical_ratio

82 83 84
        self.tracked_thresh = tracked_thresh
        self.r_tracked_thresh = r_tracked_thresh
        self.unconfirmed_thresh = unconfirmed_thresh
F
Feng Ni 已提交
85 86 87 88
        self.conf_thres = conf_thres
        self.match_thres = match_thres
        self.low_conf_thres = low_conf_thres

89 90
        if motion == 'KalmanFilter':
            self.motion = KalmanFilter()
F
FlyingQianMM 已提交
91
        self.metric_type = metric_type
92 93

        self.frame_id = 0
94 95 96
        self.tracked_tracks_dict = defaultdict(list)  # dict(list[STrack])
        self.lost_tracks_dict = defaultdict(list)  # dict(list[STrack])
        self.removed_tracks_dict = defaultdict(list)  # dict(list[STrack])
97 98 99 100

        self.max_time_lost = 0
        # max_time_lost will be calculated: int(frame_rate / 30.0 * track_buffer)

F
Feng Ni 已提交
101
    def update(self, pred_dets, pred_embs=None):
102 103 104 105 106 107
        """
        Processes the image frame and finds bounding box(detections).
        Associates the detection with corresponding tracklets and also handles
            lost, removed, refound and active tracklets.

        Args:
108 109 110 111
            pred_dets (np.array): Detection results of the image, the shape is
                [N, 6], means 'x0, y0, x1, y1, score, cls_id'.
            pred_embs (np.array): Embedding results of the image, the shape is
                [N, 128] or [N, 512].
112 113

        Return:
114 115
            output_stracks_dict (dict(list)): The list contains information
                regarding the online_tracklets for the recieved image tensor.
116 117
        """
        self.frame_id += 1
118 119 120 121 122 123 124
        if self.frame_id == 1:
            STrack.init_count(self.num_classes)
        activated_tracks_dict = defaultdict(list)
        refined_tracks_dict = defaultdict(list)
        lost_tracks_dict = defaultdict(list)
        removed_tracks_dict = defaultdict(list)
        output_tracks_dict = defaultdict(list)
125

126 127
        pred_dets_dict = defaultdict(list)
        pred_embs_dict = defaultdict(list)
F
FlyingQianMM 已提交
128

129 130 131 132
        # unify single and multi classes detection and embedding results
        for cls_id in range(self.num_classes):
            cls_idx = (pred_dets[:, 5:] == cls_id).squeeze(-1)
            pred_dets_dict[cls_id] = pred_dets[cls_idx]
F
Feng Ni 已提交
133 134 135 136
            if pred_embs is not None:
                pred_embs_dict[cls_id] = pred_embs[cls_idx]
            else:
                pred_embs_dict[cls_id] = None
137

138 139 140 141 142 143 144
        for cls_id in range(self.num_classes):
            """ Step 1: Get detections by class"""
            pred_dets_cls = pred_dets_dict[cls_id]
            pred_embs_cls = pred_embs_dict[cls_id]
            remain_inds = (pred_dets_cls[:, 4:5] > self.conf_thres).squeeze(-1)
            if remain_inds.sum() > 0:
                pred_dets_cls = pred_dets_cls[remain_inds]
F
Feng Ni 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157
                if self.use_byte:
                    detections = [
                        STrack(
                            STrack.tlbr_to_tlwh(tlbrs[:4]), tlbrs[4], cls_id, 30, temp_feat=None)
                        for tlbrs in pred_dets_cls
                    ]
                else:
                    pred_embs_cls = pred_embs_cls[remain_inds]
                    detections = [
                        STrack(
                            STrack.tlbr_to_tlwh(tlbrs[:4]), tlbrs[4], cls_id, 30, temp_feat)
                        for (tlbrs, temp_feat) in zip(pred_dets_cls, pred_embs_cls)
                    ]
158
            else:
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
                detections = []
            ''' Add newly detected tracklets to tracked_stracks'''
            unconfirmed_dict = defaultdict(list)
            tracked_tracks_dict = defaultdict(list)
            for track in self.tracked_tracks_dict[cls_id]:
                if not track.is_activated:
                    # previous tracks which are not active in the current frame are added in unconfirmed list
                    unconfirmed_dict[cls_id].append(track)
                else:
                    # Active tracks are added to the local list 'tracked_stracks'
                    tracked_tracks_dict[cls_id].append(track)
            """ Step 2: First association, with embedding"""
            # building tracking pool for the current frame
            track_pool_dict = defaultdict(list)
            track_pool_dict[cls_id] = joint_stracks(
                tracked_tracks_dict[cls_id], self.lost_tracks_dict[cls_id])
175

176 177
            # Predict the current location with KalmanFilter
            STrack.multi_predict(track_pool_dict[cls_id], self.motion)
178

F
Feng Ni 已提交
179 180 181 182 183 184 185 186 187 188 189
            if self.use_byte:
                dists = matching.iou_distance(track_pool_dict[cls_id], detections)
                matches, u_track, u_detection = matching.linear_assignment(
                    dists, thresh=self.match_thres) # 
            else:
                dists = matching.embedding_distance(
                    track_pool_dict[cls_id], detections, metric=self.metric_type)
                dists = matching.fuse_motion(self.motion, dists,
                                            track_pool_dict[cls_id], detections)
                matches, u_track, u_detection = matching.linear_assignment(
                    dists, thresh=self.tracked_thresh)
190

191 192 193 194 195 196 197 198 199 200 201 202 203
            for i_tracked, idet in matches:
                # i_tracked is the id of the track and idet is the detection
                track = track_pool_dict[cls_id][i_tracked]
                det = detections[idet]
                if track.state == TrackState.Tracked:
                    # If the track is active, add the detection to the track
                    track.update(detections[idet], self.frame_id)
                    activated_tracks_dict[cls_id].append(track)
                else:
                    # We have obtained a detection from a track which is not active,
                    # hence put the track in refind_stracks list
                    track.re_activate(det, self.frame_id, new_id=False)
                    refined_tracks_dict[cls_id].append(track)
204

205 206
            # None of the steps below happen if there are no undetected tracks.
            """ Step 3: Second association, with IOU"""
F
Feng Ni 已提交
207 208 209 210 211
            if self.use_byte:
                inds_low = pred_dets_dict[cls_id][:, 4:5] > self.low_conf_thres
                inds_high = pred_dets_dict[cls_id][:, 4:5] < self.conf_thres
                inds_second = np.logical_and(inds_low, inds_high).squeeze(-1)
                pred_dets_cls_second = pred_dets_dict[cls_id][inds_second]
212

F
Feng Ni 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
                # association the untrack to the low score detections
                if len(pred_dets_cls_second) > 0:
                    detections_second = [
                        STrack(STrack.tlbr_to_tlwh(tlbrs[:4]), tlbrs[4], cls_id, 30, temp_feat=None)
                        for tlbrs in pred_dets_cls_second[:, :5]
                    ]
                else:
                    detections_second = []
                r_tracked_stracks = [
                    track_pool_dict[cls_id][i] for i in u_track
                    if track_pool_dict[cls_id][i].state == TrackState.Tracked
                ]
                dists = matching.iou_distance(r_tracked_stracks, detections_second)
                matches, u_track, u_detection_second = matching.linear_assignment(
                    dists, thresh=0.4) # not r_tracked_thresh
            else:
                detections = [detections[i] for i in u_detection]
                r_tracked_stracks = []
                for i in u_track:
                    if track_pool_dict[cls_id][i].state == TrackState.Tracked:
                        r_tracked_stracks.append(track_pool_dict[cls_id][i])
                dists = matching.iou_distance(r_tracked_stracks, detections)

                matches, u_track, u_detection = matching.linear_assignment(
                    dists, thresh=self.r_tracked_thresh)
238

239 240
            for i_tracked, idet in matches:
                track = r_tracked_stracks[i_tracked]
F
Feng Ni 已提交
241
                det = detections[idet] if not self.use_byte else detections_second[idet]
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
                if track.state == TrackState.Tracked:
                    track.update(det, self.frame_id)
                    activated_tracks_dict[cls_id].append(track)
                else:
                    track.re_activate(det, self.frame_id, new_id=False)
                    refined_tracks_dict[cls_id].append(track)

            for it in u_track:
                track = r_tracked_stracks[it]
                if not track.state == TrackState.Lost:
                    track.mark_lost()
                    lost_tracks_dict[cls_id].append(track)
            '''Deal with unconfirmed tracks, usually tracks with only one beginning frame'''
            detections = [detections[i] for i in u_detection]
            dists = matching.iou_distance(unconfirmed_dict[cls_id], detections)
            matches, u_unconfirmed, u_detection = matching.linear_assignment(
                dists, thresh=self.unconfirmed_thresh)
            for i_tracked, idet in matches:
                unconfirmed_dict[cls_id][i_tracked].update(detections[idet],
                                                           self.frame_id)
                activated_tracks_dict[cls_id].append(unconfirmed_dict[cls_id][
                    i_tracked])
            for it in u_unconfirmed:
                track = unconfirmed_dict[cls_id][it]
266
                track.mark_removed()
267 268 269 270 271 272 273 274 275 276 277 278 279
                removed_tracks_dict[cls_id].append(track)
            """ Step 4: Init new stracks"""
            for inew in u_detection:
                track = detections[inew]
                if track.score < self.det_thresh:
                    continue
                track.activate(self.motion, self.frame_id)
                activated_tracks_dict[cls_id].append(track)
            """ Step 5: Update state"""
            for track in self.lost_tracks_dict[cls_id]:
                if self.frame_id - track.end_frame > self.max_time_lost:
                    track.mark_removed()
                    removed_tracks_dict[cls_id].append(track)
280

281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
            self.tracked_tracks_dict[cls_id] = [
                t for t in self.tracked_tracks_dict[cls_id]
                if t.state == TrackState.Tracked
            ]
            self.tracked_tracks_dict[cls_id] = joint_stracks(
                self.tracked_tracks_dict[cls_id], activated_tracks_dict[cls_id])
            self.tracked_tracks_dict[cls_id] = joint_stracks(
                self.tracked_tracks_dict[cls_id], refined_tracks_dict[cls_id])
            self.lost_tracks_dict[cls_id] = sub_stracks(
                self.lost_tracks_dict[cls_id], self.tracked_tracks_dict[cls_id])
            self.lost_tracks_dict[cls_id].extend(lost_tracks_dict[cls_id])
            self.lost_tracks_dict[cls_id] = sub_stracks(
                self.lost_tracks_dict[cls_id], self.removed_tracks_dict[cls_id])
            self.removed_tracks_dict[cls_id].extend(removed_tracks_dict[cls_id])
            self.tracked_tracks_dict[cls_id], self.lost_tracks_dict[
                cls_id] = remove_duplicate_stracks(
                    self.tracked_tracks_dict[cls_id],
                    self.lost_tracks_dict[cls_id])
299

300 301 302 303 304
            # get scores of lost tracks
            output_tracks_dict[cls_id] = [
                track for track in self.tracked_tracks_dict[cls_id]
                if track.is_activated
            ]
305

306 307 308 309 310 311 312 313 314
            logger.debug('===========Frame {}=========='.format(self.frame_id))
            logger.debug('Activated: {}'.format(
                [track.track_id for track in activated_tracks_dict[cls_id]]))
            logger.debug('Refind: {}'.format(
                [track.track_id for track in refined_tracks_dict[cls_id]]))
            logger.debug('Lost: {}'.format(
                [track.track_id for track in lost_tracks_dict[cls_id]]))
            logger.debug('Removed: {}'.format(
                [track.track_id for track in removed_tracks_dict[cls_id]]))
315

316
        return output_tracks_dict