multi_devices_graph_builder.cc 19.1 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
C
chengduoZH 已提交
14
#include <algorithm>
Y
Yancey1989 已提交
15
#include <fstream>
C
chengduoZH 已提交
16
#include <string>
C
chengduoZH 已提交
17
#include <utility>
C
chengduoZH 已提交
18 19
#include <vector>

C
chengduoZH 已提交
20
#include "paddle/fluid/framework/details/broadcast_op_handle.h"
Y
Yu Yang 已提交
21
#include "paddle/fluid/framework/details/computation_op_handle.h"
C
chengduoZH 已提交
22
#include "paddle/fluid/framework/details/multi_devices_graph_builder.h"
C
chengduoZH 已提交
23
#include "paddle/fluid/framework/details/reduce_op_handle.h"
Y
Yancey1989 已提交
24
#include "paddle/fluid/framework/details/rpc_op_handle.h"
Y
Yu Yang 已提交
25
#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h"
Y
Fix bug  
yuyang18 已提交
26
#include "paddle/fluid/framework/op_info.h"
Y
Yu Yang 已提交
27
#include "paddle/fluid/framework/scope.h"
Y
Yu Yang 已提交
28 29 30 31

#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/framework/details/nccl_all_reduce_op_handle.h"
#endif
Y
Yu Yang 已提交
32 33 34 35

namespace paddle {
namespace framework {
namespace details {
Y
Yu Yang 已提交
36 37

#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
38 39 40 41
MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
    const std::vector<platform::Place> &places,
    const std::string &loss_var_name,
    const std::unordered_set<std::string> &params,
C
chengduoZH 已提交
42
    const std::vector<Scope *> &local_scopes,
Y
yuyang18 已提交
43
    platform::NCCLContextMap *nccl_ctxs, const BuildStrategy &strategy)
Y
Yu Yang 已提交
44 45 46
    : loss_var_name_(loss_var_name),
      places_(places),
      local_scopes_(local_scopes),
C
chengduoZH 已提交
47
      nccl_ctxs_(nccl_ctxs),
Y
yuyang18 已提交
48
      strategy_(strategy) {
Y
Yu Yang 已提交
49 50 51 52 53
#else
MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
    const std::vector<platform::Place> &places,
    const std::string &loss_var_name,
    const std::unordered_set<std::string> &params,
Y
yuyang18 已提交
54
    const std::vector<Scope *> &local_scopes, const BuildStrategy &strategy)
Y
Yu Yang 已提交
55 56
    : loss_var_name_(loss_var_name),
      places_(places),
C
chengduoZH 已提交
57
      local_scopes_(local_scopes),
Y
yuyang18 已提交
58
      strategy_(strategy) {
Y
Yu Yang 已提交
59
#endif
Y
Yu Yang 已提交
60 61 62 63 64
  for (auto &p : params) {
    grad_names_.insert(GradVarName(p));
  }
}

Y
Yu Yang 已提交
65 66
void MultiDevSSAGraphBuilder::CreateOpHandleIOs(SSAGraph *result,
                                                const OpDesc &op,
Y
Yu Yang 已提交
67 68
                                                size_t place_id) const {
  auto p = places_[place_id];
T
wip  
typhoonzero 已提交
69
  auto *op_handle = result->ops_.back().get();
X
Xin Pan 已提交
70 71
  op_handle->SetDeviceContext(p,
                              platform::DeviceContextPool::Instance().Get(p));
T
wip  
typhoonzero 已提交
72

Y
Yu Yang 已提交
73 74 75
  for (auto &each_var_name : op.InputArgumentNames()) {
    VarHandle *var =
        CreateOrGetLatestVarHandle(result, each_var_name, p, place_id);
T
wip  
typhoonzero 已提交
76 77 78
    op_handle->AddInput(var);
  }

Y
Yu Yang 已提交
79 80
  for (auto &each_var_name : op.OutputArgumentNames()) {
    CreateOpOutput(result, op_handle, each_var_name, p, place_id);
T
wip  
typhoonzero 已提交
81 82
  }
}
Y
fix pe  
Yancey1989 已提交
83 84 85 86

std::vector<std::string> MultiDevSSAGraphBuilder::FindDistTrainSendVars(
    const ProgramDesc &program) const {
  std::vector<std::string> send_vars;
Y
Yancey1989 已提交
87 88
  // since parameters are all in block 0,
  // it's enough to only scan send ops in block 0
Y
fix pe  
Yancey1989 已提交
89
  for (auto *op : program.Block(0).AllOps()) {
Y
Yancey1989 已提交
90 91 92
    // TODO(Yancey1989): use a graceful method to find send op,
    // instead of the the hard code string
    if (op->Type() == "send_vars") {
Y
fix pe  
Yancey1989 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105
      auto op_vars = op->InputArgumentNames();
      send_vars.reserve(send_vars.size() +
                        std::distance(op_vars.begin(), op_vars.end()));
      send_vars.insert(send_vars.end(), op_vars.begin(), op_vars.end());
    }
  }
  return send_vars;
}

std::vector<std::string> MultiDevSSAGraphBuilder::FindDistTrainRecvVars(
    const ProgramDesc &program) const {
  std::vector<std::string> recv_vars;
  for (auto *op : program.Block(0).AllOps()) {
Y
Yancey1989 已提交
106 107 108
    // TODO(Yancey1989): use a graceful method to find recv op,
    // instead of the hard code string
    if (op->Type() == "recv") {
Y
fix pe  
Yancey1989 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121
      auto op_vars = op->OutputArgumentNames();
      recv_vars.reserve(recv_vars.size() +
                        std::distance(op_vars.begin(), op_vars.end()));
      recv_vars.insert(recv_vars.end(), op_vars.begin(), op_vars.end());
    }
  }
  return recv_vars;
}

bool MultiDevSSAGraphBuilder::IsDistTrainOp(
    const OpDesc &op, const std::vector<std::string> &send_vars,
    const std::vector<std::string> &recv_vars) const {
  if (send_vars.size() == 0 || recv_vars.size() == 0) {
T
typhoonzero 已提交
122 123 124
    return false;
  }

Y
Yu Yang 已提交
125 126 127 128
  /**
   * Check any of opvars contains `.block` and in sendvars
   */
  auto checker = [](const std::vector<std::string> &opvars,
Y
fix pe  
Yancey1989 已提交
129
                    const std::vector<std::string> &rpc_vars) -> bool {
T
typhoonzero 已提交
130
    for (auto &var : opvars) {
Y
Yancey1989 已提交
131 132 133
      // a variable name with the suffix `.block` means it's a splited
      // variable by (DistributeTranspiler)
      // [python/paddle/fluid/transpiler/distribute_transpiler.py]
T
typhoonzero 已提交
134
      if (var.find(".block") != std::string::npos &&
Y
fix pe  
Yancey1989 已提交
135
          std::find(rpc_vars.begin(), rpc_vars.end(), var) != rpc_vars.end()) {
Y
Yu Yang 已提交
136
        return true;
T
typhoonzero 已提交
137 138
      }
    }
Y
Yu Yang 已提交
139
    return false;
T
typhoonzero 已提交
140 141
  };

Y
Yancey1989 已提交
142 143
  return checker(op.OutputArgumentNames(), send_vars) ||
         checker(op.InputArgumentNames(), recv_vars);
T
typhoonzero 已提交
144 145
}

Y
Yu Yang 已提交
146 147
std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
    const ProgramDesc &program) const {
148
  VLOG(3) << "Building ....";
C
chengduoZH 已提交
149
  std::unordered_map<std::string, VarDesc *> all_vars;
C
fix ci  
chengduoZH 已提交
150
  for (auto *var : program.Block(0).AllVars()) {
C
chengduoZH 已提交
151
    all_vars[var->Name()] = var;
C
fix ci  
chengduoZH 已提交
152
  }
C
chengduoZH 已提交
153

Y
Yu Yang 已提交
154
  auto graph = new SSAGraph();
Y
Yu Yang 已提交
155
  SSAGraph &result = *graph;
C
chengduoZH 已提交
156
  std::unordered_set<std::string> og_has_been_broadcast;
Y
Yu Yang 已提交
157 158 159 160 161

  // We cannot invoke resize. It is a bug of GCC 4.8
  result.vars_ = std::vector<
      std::unordered_map<std::string, std::vector<std::unique_ptr<VarHandle>>>>(
      places_.size());
Y
Yu Yang 已提交
162

Y
fix pe  
Yancey1989 已提交
163 164 165 166
  // find send/recv vars so that we can place the distributed training
  // realted op in the place 0
  auto send_vars = FindDistTrainSendVars(program);
  auto recv_vars = FindDistTrainRecvVars(program);
T
typhoonzero 已提交
167

C
chengduoZH 已提交
168 169 170 171 172
  std::vector<std::unordered_set<std::string>> var_name_on_devices;
  std::vector<std::unordered_set<std::string>> bcast_var_name_set;
  var_name_on_devices.resize(places_.size());
  bcast_var_name_set.resize(places_.size());

C
chengduoZH 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
  size_t cur_device_id = 0;
  std::vector<int64_t> balance_grads(places_.size(), 0);

  auto get_appropriate_dev = [&](std::string &g_name) -> size_t {
    auto var_desc = all_vars.at(g_name);
    PADDLE_ENFORCE_NOT_NULL(var_desc);
    auto dim = framework::make_ddim(var_desc->GetShape());
    int64_t numel = framework::product(dim);
    PADDLE_ENFORCE_GE(numel, 0);
    auto smallest =
        std::min_element(std::begin(balance_grads), std::end(balance_grads));
    size_t dev_id =
        static_cast<size_t>(std::distance(std::begin(balance_grads), smallest));
    balance_grads[dev_id] += numel;
    return dev_id;
  };

Y
Yu Yang 已提交
190
  bool is_forwarding = true;
191 192 193 194 195 196 197 198
  int rpc_op_device_id = 0;
  auto schedule_rpc_op = [&]() -> void {
    rpc_op_device_id++;
    if (rpc_op_device_id >= static_cast<int>(places_.size())) {
      rpc_op_device_id = 0;
    }
  };

Y
Yu Yang 已提交
199
  for (auto *op : program.Block(0).AllOps()) {
Y
Yancey1989 已提交
200 201 202
    if (boost::get<int>(
            op->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
        static_cast<int>(OpRole::kRPC)) {
Y
Yancey1989 已提交
203
      // append rpc op if program is distributed trainer main program.
Y
Yu Yang 已提交
204
      // always use the first device
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
      if (op->Type() == "send_vars") {
        auto got = remote_vars_devices_.find(op->InputArgumentNames()[0]);
        if (got == remote_vars_devices_.end()) {
          schedule_rpc_op();
        } else {
          rpc_op_device_id = got->second;
        }
        CreateRPCOp(&result, *op, rpc_op_device_id);
      } else if (op->Type() == "recv") {
        schedule_rpc_op();
        for (auto &varname : op->OutputArgumentNames()) {
          remote_vars_devices_.insert({varname, rpc_op_device_id});
        }
        CreateRPCOp(&result, *op, rpc_op_device_id);
      } else {
        CreateRPCOp(&result, *op, 0);
      }
Y
fix pe  
Yancey1989 已提交
222
    } else if (IsDistTrainOp(*op, send_vars, recv_vars)) {
223 224 225 226 227 228 229
      if (op->Type() == "split_byref") {
        schedule_rpc_op();
        for (auto &varname : op->OutputArgumentNames()) {
          remote_vars_devices_.insert({varname, rpc_op_device_id});
        }
        CreateDistTrainOp(&result, *op, rpc_op_device_id);
      }
Y
Yancey1989 已提交
230
      if (op->Type() == "concat") {
231
        auto got = remote_vars_devices_.find(op->InputArgumentNames()[0]);
Y
Yancey1989 已提交
232
        PADDLE_ENFORCE(got != remote_vars_devices_.end(),
233
                       "can not find right place to concatenate received var.");
234 235 236 237
        CreateDistTrainOp(&result, *op, got->second);
      } else {
        CreateDistTrainOp(&result, *op, 0);
      }
Y
Yu Yang 已提交
238
    } else if (IsScaleLossOp(*op)) {
Y
Yu Yang 已提交
239
      // user can customize loss@grad if not use_default_grad_scale_
Y
yuyang18 已提交
240 241
      if (strategy_.gradient_scale_ !=
          BuildStrategy::GradientScaleStrategy::kCustomized) {
Y
Yu Yang 已提交
242 243
        CreateScaleLossGradOp(&result);
      }
Y
Yu Yang 已提交
244
      is_forwarding = false;
Y
Yu Yang 已提交
245
    } else {
C
chengduoZH 已提交
246 247 248 249 250 251 252 253 254
      int op_dev_id = GetOpDeviceID(var_name_on_devices, *op);
      if (op_dev_id == -1) {  // var on all device
        CreateComputationalOps(&result, *op, places_.size());
      } else {
        CreateComputationalOp(&result, *op, op_dev_id);
        for (auto &var_name : op->OutputArgumentNames()) {
          var_name_on_devices[op_dev_id].emplace(var_name);
        }
      }
C
chengduoZH 已提交
255
      if (!is_forwarding && places_.size() > 1) {
Y
Yu Yang 已提交
256
        // Currently, we assume that once gradient is generated, it can be
Y
Yu Yang 已提交
257
        // broadcast, and each gradient is only broadcast once.
Y
yuyang18 已提交
258 259 260
        if (static_cast<bool>(boost::get<int>(op->GetAttr(
                                  OpProtoAndCheckerMaker::OpRoleAttrName())) &
                              static_cast<int>(OpRole::kBackward))) {
Y
yuyang18 已提交
261 262 263 264 265 266 267
          try {
            auto backward_vars =
                boost::get<std::vector<std::string>>(op->GetNullableAttr(
                    OpProtoAndCheckerMaker::OpRoleVarAttrName()));

            PADDLE_ENFORCE_EQ(backward_vars.size() % 2, 0);

Y
Fix bug  
yuyang18 已提交
268
            for (size_t i = 0; i < backward_vars.size(); i += 2) {
Y
yuyang18 已提交
269 270
              auto &p_name = backward_vars[i];
              auto &g_name = backward_vars[i + 1];
Y
yuyang18 已提交
271 272
              VLOG(10) << "Bcast " << g_name << " for parameter " << p_name;

Y
yuyang18 已提交
273 274
              switch (strategy_.reduce_) {
                case BuildStrategy::ReduceStrategy::kReduce:
C
chengduoZH 已提交
275
                  cur_device_id = get_appropriate_dev(g_name);
Y
yuyang18 已提交
276 277 278 279 280
                  CreateReduceOp(&result, g_name, cur_device_id);
                  var_name_on_devices[cur_device_id].emplace(g_name);
                  bcast_var_name_set[cur_device_id].emplace(p_name);
                  break;
                case BuildStrategy::ReduceStrategy::kAllReduce:
C
chengduoZH 已提交
281
                  if (IsSparseGradient(all_vars, g_name)) {
Y
yuyang18 已提交
282 283 284 285 286 287 288
                    CreateReduceOp(&result, g_name, 0);
                    CreateBroadcastOp(&result, g_name, 0);
                  } else {
                    InsertNCCLAllReduceOp(&result, g_name);
                  }
                  break;
              }
C
chengduoZH 已提交
289
            }
Y
yuyang18 已提交
290
          } catch (boost::bad_get e) {
Y
Yu Yang 已提交
291 292 293 294 295 296
          }
        }
      }
    }
  }

C
chengduoZH 已提交
297 298 299 300 301 302 303
  // Insert BCast Ops
  for (size_t dev_id = 0; dev_id < bcast_var_name_set.size(); ++dev_id) {
    auto &to_bcast_set = bcast_var_name_set[dev_id];
    for (auto &bcast_name : to_bcast_set) {
      CreateBroadcastOp(&result, bcast_name, dev_id);
    }
  }
Y
Yu Yang 已提交
304 305 306 307 308
  /*
    Dependency graph has been constructed. However, there are still data
    harzaeds need to be handled.
   */
  PolishGraphToSupportDataHazards(&result);
Y
Yu Yang 已提交
309

Y
Yu Yang 已提交
310 311 312 313 314
  /*
   * Only variables should be the leaves of graph.
   */
  AddOutputToLeafOps(&result);

Y
Yu Yang 已提交
315
  return std::unique_ptr<SSAGraph>(graph);
Y
Yu Yang 已提交
316 317
}

C
fix ci  
chengduoZH 已提交
318
bool MultiDevSSAGraphBuilder::IsSparseGradient(
C
chengduoZH 已提交
319
    const std::unordered_map<std::string, VarDesc *> &all_vars,
C
fix ci  
chengduoZH 已提交
320
    const std::string &og) const {
C
chengduoZH 已提交
321 322
  PADDLE_ENFORCE(all_vars.count(og) != 0);
  if (all_vars.at(og)->GetType() == proto::VarType::SELECTED_ROWS) {
C
fix ci  
chengduoZH 已提交
323 324 325
    return true;
  }
  return false;
326 327
}

C
chengduoZH 已提交
328 329
void MultiDevSSAGraphBuilder::CreateBroadcastOp(SSAGraph *result,
                                                const std::string &p_name,
C
chengduoZH 已提交
330
                                                size_t src_dev_id) const {
C
chengduoZH 已提交
331 332 333 334 335 336 337
#ifdef PADDLE_WITH_CUDA
  auto *op_handle = new BroadcastOpHandle(local_scopes_, places_, nccl_ctxs_);
#else
  auto *op_handle = new BroadcastOpHandle(local_scopes_, places_);
#endif

  result->ops_.emplace_back(op_handle);
C
chengduoZH 已提交
338
  auto *in = result->vars_.at(src_dev_id).at(p_name).back().get();
C
chengduoZH 已提交
339 340 341
  op_handle->AddInput(in);

  for (size_t i = 0; i < places_.size(); ++i) {
C
chengduoZH 已提交
342
    auto &vars = result->vars_.at(i).at(p_name);
C
chengduoZH 已提交
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
    auto &p = places_[i];
    auto *out_var = new VarHandle(vars.size(), i, p_name, p);
    vars.emplace_back(out_var);
    op_handle->AddOutput(out_var);
#ifndef ADDLE_WITH_CUDA
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
#endif
  }
}

void MultiDevSSAGraphBuilder::CreateComputationalOp(SSAGraph *result,
                                                    const OpDesc &op,
                                                    int dev_id) const {
  result->ops_.emplace_back(
      new ComputationOpHandle(op, local_scopes_[dev_id], places_[dev_id]));
  CreateOpHandleIOs(result, op, dev_id);
}

Y
Yu Yang 已提交
362 363 364 365 366 367 368 369 370 371
void MultiDevSSAGraphBuilder::InsertNCCLAllReduceOp(
    SSAGraph *result, const std::string &og) const {
#ifdef PADDLE_WITH_CUDA
  result->ops_.emplace_back(
      new NCCLAllReduceOpHandle(local_scopes_, places_, *nccl_ctxs_));
  auto *op_handle = result->ops_.back().get();

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
    auto &vars = result->vars_[i][og];
Y
Yu Yang 已提交
372 373
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
Y
Yu Yang 已提交
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
    op_handle->AddInput(prev_grad.get());

    auto var = new VarHandle(vars.size() - 1, i, og, p);
    vars.emplace_back(var);
    op_handle->AddOutput(var);
  }
#else
  PADDLE_ENFORCE("Not implemented");
#endif
}

bool MultiDevSSAGraphBuilder::IsParameterGradientOnce(
    const std::string &og,
    std::unordered_set<std::string> *og_has_been_broadcast) const {
  bool is_pg_once =
      grad_names_.count(og) != 0 && og_has_been_broadcast->count(og) == 0;
  if (is_pg_once) {
    // Insert NCCL AllReduce Op
    og_has_been_broadcast->insert(og);
  }
  return is_pg_once;
}

C
chengduoZH 已提交
397 398 399
int MultiDevSSAGraphBuilder::GetOpDeviceID(
    const std::vector<std::unordered_set<std::string>> &var_name_on_devices,
    const OpDesc &op) const {
Y
yuyang18 已提交
400
  if (strategy_.reduce_ != BuildStrategy::ReduceStrategy::kReduce) {
C
chengduoZH 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
    return -1;
  }

  int var_dev_id = -1;
  for (auto &var_name : op.InputArgumentNames()) {
    if (var_dev_id != -1) break;
    for (size_t i = 0; i < var_name_on_devices.size(); ++i) {
      if (var_name_on_devices[i].count(var_name)) {
        var_dev_id = static_cast<int>(i);
        break;
      }
    }
  }
  return var_dev_id;
}

Y
Yu Yang 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
void MultiDevSSAGraphBuilder::CreateScaleLossGradOp(SSAGraph *result) const {
  for (size_t i = 0; i < places_.size(); ++i) {
// Insert ScaleCost OpHandle
#ifdef PADDLE_WITH_CUDA
    auto *communication_dev_ctx = nccl_ctxs_->DevCtx(places_[i]);
#else
    auto *communication_dev_ctx =
        platform::DeviceContextPool::Instance().Get(platform::CPUPlace());
#endif

    auto *op_handle =
        new ScaleLossGradOpHandle(local_scopes_.size(), local_scopes_[i],
                                  places_[i], communication_dev_ctx);
    result->ops_.emplace_back(op_handle);

    // FIXME: Currently ScaleLossGradOp only use device_count as scale
    // factor. So it does not depend on any other operators.
    // VarHandle *loss = GetVarHandle(loss_var_name, place);
    // loss->pending_ops_.emplace_back(op_handle);
    // op_handle->inputs_.emplace_back(loss);

    CreateOpOutput(result, op_handle, GradVarName(loss_var_name_), places_[i],
                   i);
  }
}

void MultiDevSSAGraphBuilder::CreateComputationalOps(SSAGraph *result,
T
typhoonzero 已提交
444 445 446
                                                     const OpDesc &op,
                                                     size_t num_places) const {
  for (size_t scope_idx = 0; scope_idx < num_places; ++scope_idx) {
Y
Yu Yang 已提交
447 448 449
    auto p = places_[scope_idx];
    auto s = local_scopes_[scope_idx];
    result->ops_.emplace_back(new ComputationOpHandle(op, s, p));
Y
Yu Yang 已提交
450
    CreateOpHandleIOs(result, op, scope_idx);
Y
Yu Yang 已提交
451 452 453
  }
}

C
chengduoZH 已提交
454 455 456
VarHandle *MultiDevSSAGraphBuilder::CreateReduceOp(SSAGraph *result,
                                                   const std::string &og,
                                                   int dst_dev_id) const {
C
chengduoZH 已提交
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
#ifdef PADDLE_WITH_CUDA
  result->ops_.emplace_back(
      new ReduceOpHandle(local_scopes_, places_, nccl_ctxs_));
#else
  result->ops_.emplace_back(new ReduceOpHandle(local_scopes_, places_));
#endif
  auto *op_handle = result->ops_.back().get();

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &vars = result->vars_[i][og];
#ifndef PADDLE_WITH_CUDA
    auto &p = places_[i];
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
#endif
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
    op_handle->AddInput(prev_grad.get());
  }
  auto &vars = result->vars_[dst_dev_id][og];
  auto var =
      new VarHandle(vars.size() - 1, dst_dev_id, og, places_[dst_dev_id]);
  vars.emplace_back(var);
  op_handle->AddOutput(var);
  return var;
}

Y
fix pe  
Yancey1989 已提交
484 485
void MultiDevSSAGraphBuilder::ConnectOp(SSAGraph *result, OpHandleBase *op,
                                        const std::string &prev_op_name) const {
Y
Yancey1989 已提交
486
  for (auto &prev_op : result->ops_) {
Y
fix pe  
Yancey1989 已提交
487
    if (prev_op->Name() == prev_op_name) {
Y
Yancey1989 已提交
488 489 490
      auto *dep_var = new DummyVarHandle();
      prev_op->AddOutput(dep_var);
      result->dep_vars_.emplace(dep_var);
Y
fix pe  
Yancey1989 已提交
491
      op->AddInput(dep_var);
Y
Yancey1989 已提交
492 493 494 495
    }
  }
}

Y
Yancey1989 已提交
496
void MultiDevSSAGraphBuilder::CreateDistTrainOp(SSAGraph *result,
497 498 499
                                                const OpDesc &op,
                                                int place_id) const {
  CreateComputationalOp(result, op, place_id);
Y
Yancey1989 已提交
500 501 502 503 504
  if (op.Type() == "concat") {
    ConnectOp(result, result->ops_.back().get(), "fetch_barrier");
  }
}

505
void MultiDevSSAGraphBuilder::CreateRPCOp(SSAGraph *result, const OpDesc &op,
506 507 508
                                          int device_id) const {
  result->ops_.emplace_back(new RPCOpHandle(op, local_scopes_[device_id],
                                            op.Type(), places_[device_id]));
Y
fix pe  
Yancey1989 已提交
509

Y
Yancey1989 已提交
510
  if (op.Type() == "send_barrier") {
Y
fix pe  
Yancey1989 已提交
511
    ConnectOp(result, result->ops_.back().get(), "send_vars");
Y
Yancey1989 已提交
512
  } else if (op.Type() == "recv") {
Y
fix pe  
Yancey1989 已提交
513
    ConnectOp(result, result->ops_.back().get(), "send_barrier");
Y
Yancey1989 已提交
514
  } else if (op.Type() == "fetch_barrier") {
Y
fix pe  
Yancey1989 已提交
515
    ConnectOp(result, result->ops_.back().get(), "recv");
Y
Yancey1989 已提交
516
  } else if (op.Type() == "send_vars") {
Y
Yancey1989 已提交
517 518 519
    // do nothing
  } else {
    PADDLE_THROW(
Y
Yancey1989 已提交
520
        "rpc op should be in ["
Y
Yancey1989 已提交
521 522 523
        "send_vars, send_barrier. recv, fetch_barrier]");
  }

Y
Yancey1989 已提交
524 525
  // TODO(Yancey1989): schedule rpc op on different place may
  // increate throughput
526
  CreateOpHandleIOs(result, op, device_id);
Y
Yu Yang 已提交
527 528 529
}

bool MultiDevSSAGraphBuilder::IsScaleLossOp(const OpDesc &op) const {
Y
yuyang18 已提交
530 531
  return boost::get<int>(
             op.GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
Y
Fix bug  
yuyang18 已提交
532 533 534
             (static_cast<int>(OpRole::kBackward) |
              static_cast<int>(OpRole::kLoss)) &&
         !loss_var_name_.empty();  // If loss_var is empty. This is test mode
Y
Yu Yang 已提交
535
}
Y
Yu Yang 已提交
536 537 538
}  // namespace details
}  // namespace framework
}  // namespace paddle