multi_devices_graph_builder.cc 19.3 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
C
chengduoZH 已提交
14
#include <algorithm>
Y
Yancey1989 已提交
15
#include <fstream>
C
chengduoZH 已提交
16
#include <string>
C
chengduoZH 已提交
17
#include <utility>
C
chengduoZH 已提交
18 19
#include <vector>

C
chengduoZH 已提交
20
#include "paddle/fluid/framework/details/broadcast_op_handle.h"
Y
Yu Yang 已提交
21
#include "paddle/fluid/framework/details/computation_op_handle.h"
C
chengduoZH 已提交
22
#include "paddle/fluid/framework/details/multi_devices_graph_builder.h"
C
chengduoZH 已提交
23
#include "paddle/fluid/framework/details/reduce_op_handle.h"
Y
Yancey1989 已提交
24
#include "paddle/fluid/framework/details/rpc_op_handle.h"
Y
Yu Yang 已提交
25
#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h"
Y
Fix bug  
yuyang18 已提交
26
#include "paddle/fluid/framework/op_info.h"
Y
Yu Yang 已提交
27
#include "paddle/fluid/framework/scope.h"
Y
Yu Yang 已提交
28 29 30 31

#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/framework/details/nccl_all_reduce_op_handle.h"
#endif
Y
Yu Yang 已提交
32

Y
Yancey1989 已提交
33 34 35 36
DEFINE_string(ssa_graph_path, "/tmp/ssa_graph.dot",
              "the ssa graph path only print with GLOG_v=10,"
              "default /tmp/graph.dot");

Y
Yu Yang 已提交
37 38 39
namespace paddle {
namespace framework {
namespace details {
Y
Yu Yang 已提交
40 41

#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
42 43 44 45
MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
    const std::vector<platform::Place> &places,
    const std::string &loss_var_name,
    const std::unordered_set<std::string> &params,
C
chengduoZH 已提交
46
    const std::vector<Scope *> &local_scopes,
Y
yuyang18 已提交
47
    platform::NCCLContextMap *nccl_ctxs, const BuildStrategy &strategy)
Y
Yu Yang 已提交
48 49 50
    : loss_var_name_(loss_var_name),
      places_(places),
      local_scopes_(local_scopes),
C
chengduoZH 已提交
51
      nccl_ctxs_(nccl_ctxs),
Y
yuyang18 已提交
52
      strategy_(strategy) {
Y
Yu Yang 已提交
53 54 55 56 57
#else
MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
    const std::vector<platform::Place> &places,
    const std::string &loss_var_name,
    const std::unordered_set<std::string> &params,
Y
yuyang18 已提交
58
    const std::vector<Scope *> &local_scopes, const BuildStrategy &strategy)
Y
Yu Yang 已提交
59 60
    : loss_var_name_(loss_var_name),
      places_(places),
C
chengduoZH 已提交
61
      local_scopes_(local_scopes),
Y
yuyang18 已提交
62
      strategy_(strategy) {
Y
Yu Yang 已提交
63
#endif
Y
Yu Yang 已提交
64 65 66 67 68
  for (auto &p : params) {
    grad_names_.insert(GradVarName(p));
  }
}

Y
Yu Yang 已提交
69 70
void MultiDevSSAGraphBuilder::CreateOpHandleIOs(SSAGraph *result,
                                                const OpDesc &op,
Y
Yu Yang 已提交
71 72
                                                size_t place_id) const {
  auto p = places_[place_id];
T
wip  
typhoonzero 已提交
73
  auto *op_handle = result->ops_.back().get();
X
Xin Pan 已提交
74 75
  op_handle->SetDeviceContext(p,
                              platform::DeviceContextPool::Instance().Get(p));
T
wip  
typhoonzero 已提交
76

Y
Yu Yang 已提交
77 78 79
  for (auto &each_var_name : op.InputArgumentNames()) {
    VarHandle *var =
        CreateOrGetLatestVarHandle(result, each_var_name, p, place_id);
T
wip  
typhoonzero 已提交
80 81 82
    op_handle->AddInput(var);
  }

Y
Yu Yang 已提交
83 84
  for (auto &each_var_name : op.OutputArgumentNames()) {
    CreateOpOutput(result, op_handle, each_var_name, p, place_id);
T
wip  
typhoonzero 已提交
85 86
  }
}
Y
fix pe  
Yancey1989 已提交
87 88 89 90

std::vector<std::string> MultiDevSSAGraphBuilder::FindDistTrainSendVars(
    const ProgramDesc &program) const {
  std::vector<std::string> send_vars;
Y
Yancey1989 已提交
91 92
  // since parameters are all in block 0,
  // it's enough to only scan send ops in block 0
Y
fix pe  
Yancey1989 已提交
93
  for (auto *op : program.Block(0).AllOps()) {
Y
Yancey1989 已提交
94 95 96
    // TODO(Yancey1989): use a graceful method to find send op,
    // instead of the the hard code string
    if (op->Type() == "send_vars") {
Y
fix pe  
Yancey1989 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109
      auto op_vars = op->InputArgumentNames();
      send_vars.reserve(send_vars.size() +
                        std::distance(op_vars.begin(), op_vars.end()));
      send_vars.insert(send_vars.end(), op_vars.begin(), op_vars.end());
    }
  }
  return send_vars;
}

std::vector<std::string> MultiDevSSAGraphBuilder::FindDistTrainRecvVars(
    const ProgramDesc &program) const {
  std::vector<std::string> recv_vars;
  for (auto *op : program.Block(0).AllOps()) {
Y
Yancey1989 已提交
110 111 112
    // TODO(Yancey1989): use a graceful method to find recv op,
    // instead of the hard code string
    if (op->Type() == "recv") {
Y
fix pe  
Yancey1989 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125
      auto op_vars = op->OutputArgumentNames();
      recv_vars.reserve(recv_vars.size() +
                        std::distance(op_vars.begin(), op_vars.end()));
      recv_vars.insert(recv_vars.end(), op_vars.begin(), op_vars.end());
    }
  }
  return recv_vars;
}

bool MultiDevSSAGraphBuilder::IsDistTrainOp(
    const OpDesc &op, const std::vector<std::string> &send_vars,
    const std::vector<std::string> &recv_vars) const {
  if (send_vars.size() == 0 || recv_vars.size() == 0) {
T
typhoonzero 已提交
126 127 128
    return false;
  }

Y
Yu Yang 已提交
129 130 131 132
  /**
   * Check any of opvars contains `.block` and in sendvars
   */
  auto checker = [](const std::vector<std::string> &opvars,
Y
fix pe  
Yancey1989 已提交
133
                    const std::vector<std::string> &rpc_vars) -> bool {
T
typhoonzero 已提交
134
    for (auto &var : opvars) {
Y
Yancey1989 已提交
135 136 137
      // a variable name with the suffix `.block` means it's a splited
      // variable by (DistributeTranspiler)
      // [python/paddle/fluid/transpiler/distribute_transpiler.py]
T
typhoonzero 已提交
138
      if (var.find(".block") != std::string::npos &&
Y
fix pe  
Yancey1989 已提交
139
          std::find(rpc_vars.begin(), rpc_vars.end(), var) != rpc_vars.end()) {
Y
Yu Yang 已提交
140
        return true;
T
typhoonzero 已提交
141 142
      }
    }
Y
Yu Yang 已提交
143
    return false;
T
typhoonzero 已提交
144 145
  };

Y
Yancey1989 已提交
146 147
  return checker(op.OutputArgumentNames(), send_vars) ||
         checker(op.InputArgumentNames(), recv_vars);
T
typhoonzero 已提交
148 149
}

Y
Yu Yang 已提交
150 151
std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
    const ProgramDesc &program) const {
C
chengduoZH 已提交
152
  std::unordered_map<std::string, VarDesc *> all_vars;
C
fix ci  
chengduoZH 已提交
153
  for (auto *var : program.Block(0).AllVars()) {
C
chengduoZH 已提交
154
    all_vars[var->Name()] = var;
C
fix ci  
chengduoZH 已提交
155
  }
C
chengduoZH 已提交
156

Y
Yu Yang 已提交
157
  auto graph = new SSAGraph();
Y
Yu Yang 已提交
158
  SSAGraph &result = *graph;
C
chengduoZH 已提交
159
  std::unordered_set<std::string> og_has_been_broadcast;
Y
Yu Yang 已提交
160 161 162 163 164

  // We cannot invoke resize. It is a bug of GCC 4.8
  result.vars_ = std::vector<
      std::unordered_map<std::string, std::vector<std::unique_ptr<VarHandle>>>>(
      places_.size());
Y
Yu Yang 已提交
165

Y
fix pe  
Yancey1989 已提交
166 167 168 169
  // find send/recv vars so that we can place the distributed training
  // realted op in the place 0
  auto send_vars = FindDistTrainSendVars(program);
  auto recv_vars = FindDistTrainRecvVars(program);
T
typhoonzero 已提交
170

C
chengduoZH 已提交
171 172 173 174 175
  std::vector<std::unordered_set<std::string>> var_name_on_devices;
  std::vector<std::unordered_set<std::string>> bcast_var_name_set;
  var_name_on_devices.resize(places_.size());
  bcast_var_name_set.resize(places_.size());

C
chengduoZH 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
  size_t cur_device_id = 0;
  std::vector<int64_t> balance_grads(places_.size(), 0);

  auto get_appropriate_dev = [&](std::string &g_name) -> size_t {
    auto var_desc = all_vars.at(g_name);
    PADDLE_ENFORCE_NOT_NULL(var_desc);
    auto dim = framework::make_ddim(var_desc->GetShape());
    int64_t numel = framework::product(dim);
    PADDLE_ENFORCE_GE(numel, 0);
    auto smallest =
        std::min_element(std::begin(balance_grads), std::end(balance_grads));
    size_t dev_id =
        static_cast<size_t>(std::distance(std::begin(balance_grads), smallest));
    balance_grads[dev_id] += numel;
    return dev_id;
  };

Y
Yu Yang 已提交
193
  bool is_forwarding = true;
194 195 196 197 198 199 200 201
  int rpc_op_device_id = 0;
  auto schedule_rpc_op = [&]() -> void {
    rpc_op_device_id++;
    if (rpc_op_device_id >= static_cast<int>(places_.size())) {
      rpc_op_device_id = 0;
    }
  };

Y
Yu Yang 已提交
202
  for (auto *op : program.Block(0).AllOps()) {
Y
Yancey1989 已提交
203 204 205
    if (boost::get<int>(
            op->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
        static_cast<int>(OpRole::kRPC)) {
Y
Yancey1989 已提交
206
      // append rpc op if program is distributed trainer main program.
Y
Yu Yang 已提交
207
      // always use the first device
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
      if (op->Type() == "send_vars") {
        auto got = remote_vars_devices_.find(op->InputArgumentNames()[0]);
        if (got == remote_vars_devices_.end()) {
          schedule_rpc_op();
        } else {
          rpc_op_device_id = got->second;
        }
        CreateRPCOp(&result, *op, rpc_op_device_id);
      } else if (op->Type() == "recv") {
        schedule_rpc_op();
        for (auto &varname : op->OutputArgumentNames()) {
          remote_vars_devices_.insert({varname, rpc_op_device_id});
        }
        CreateRPCOp(&result, *op, rpc_op_device_id);
      } else {
        CreateRPCOp(&result, *op, 0);
      }
Y
fix pe  
Yancey1989 已提交
225
    } else if (IsDistTrainOp(*op, send_vars, recv_vars)) {
226 227 228 229 230 231 232
      if (op->Type() == "split_byref") {
        schedule_rpc_op();
        for (auto &varname : op->OutputArgumentNames()) {
          remote_vars_devices_.insert({varname, rpc_op_device_id});
        }
        CreateDistTrainOp(&result, *op, rpc_op_device_id);
      }
Y
Yancey1989 已提交
233
      if (op->Type() == "concat") {
234
        auto got = remote_vars_devices_.find(op->InputArgumentNames()[0]);
Y
Yancey1989 已提交
235 236
        PADDLE_ENFORCE(got != remote_vars_devices_.end(),
                       "can not find right place to concat received var.");
237 238 239 240
        CreateDistTrainOp(&result, *op, got->second);
      } else {
        CreateDistTrainOp(&result, *op, 0);
      }
Y
Yu Yang 已提交
241
    } else if (IsScaleLossOp(*op)) {
Y
Yu Yang 已提交
242
      // user can customize loss@grad if not use_default_grad_scale_
Y
yuyang18 已提交
243 244
      if (strategy_.gradient_scale_ !=
          BuildStrategy::GradientScaleStrategy::kCustomized) {
Y
Yu Yang 已提交
245 246
        CreateScaleLossGradOp(&result);
      }
Y
Yu Yang 已提交
247
      is_forwarding = false;
Y
Yu Yang 已提交
248
    } else {
C
chengduoZH 已提交
249 250 251 252 253 254 255 256 257
      int op_dev_id = GetOpDeviceID(var_name_on_devices, *op);
      if (op_dev_id == -1) {  // var on all device
        CreateComputationalOps(&result, *op, places_.size());
      } else {
        CreateComputationalOp(&result, *op, op_dev_id);
        for (auto &var_name : op->OutputArgumentNames()) {
          var_name_on_devices[op_dev_id].emplace(var_name);
        }
      }
C
chengduoZH 已提交
258
      if (!is_forwarding && places_.size() > 1) {
Y
Yu Yang 已提交
259
        // Currently, we assume that once gradient is generated, it can be
Y
Yu Yang 已提交
260
        // broadcast, and each gradient is only broadcast once.
Y
yuyang18 已提交
261 262 263
        if (static_cast<bool>(boost::get<int>(op->GetAttr(
                                  OpProtoAndCheckerMaker::OpRoleAttrName())) &
                              static_cast<int>(OpRole::kBackward))) {
Y
yuyang18 已提交
264 265 266 267 268 269 270
          try {
            auto backward_vars =
                boost::get<std::vector<std::string>>(op->GetNullableAttr(
                    OpProtoAndCheckerMaker::OpRoleVarAttrName()));

            PADDLE_ENFORCE_EQ(backward_vars.size() % 2, 0);

Y
Fix bug  
yuyang18 已提交
271
            for (size_t i = 0; i < backward_vars.size(); i += 2) {
Y
yuyang18 已提交
272 273
              auto &p_name = backward_vars[i];
              auto &g_name = backward_vars[i + 1];
Y
yuyang18 已提交
274 275
              VLOG(10) << "Bcast " << g_name << " for parameter " << p_name;

Y
yuyang18 已提交
276 277
              switch (strategy_.reduce_) {
                case BuildStrategy::ReduceStrategy::kReduce:
C
chengduoZH 已提交
278
                  cur_device_id = get_appropriate_dev(g_name);
Y
yuyang18 已提交
279 280 281 282 283
                  CreateReduceOp(&result, g_name, cur_device_id);
                  var_name_on_devices[cur_device_id].emplace(g_name);
                  bcast_var_name_set[cur_device_id].emplace(p_name);
                  break;
                case BuildStrategy::ReduceStrategy::kAllReduce:
C
chengduoZH 已提交
284
                  if (IsSparseGradient(all_vars, g_name)) {
Y
yuyang18 已提交
285 286 287 288 289 290 291
                    CreateReduceOp(&result, g_name, 0);
                    CreateBroadcastOp(&result, g_name, 0);
                  } else {
                    InsertNCCLAllReduceOp(&result, g_name);
                  }
                  break;
              }
C
chengduoZH 已提交
292
            }
Y
yuyang18 已提交
293
          } catch (boost::bad_get e) {
Y
Yu Yang 已提交
294 295 296 297 298 299
          }
        }
      }
    }
  }

C
chengduoZH 已提交
300 301 302 303 304 305 306
  // Insert BCast Ops
  for (size_t dev_id = 0; dev_id < bcast_var_name_set.size(); ++dev_id) {
    auto &to_bcast_set = bcast_var_name_set[dev_id];
    for (auto &bcast_name : to_bcast_set) {
      CreateBroadcastOp(&result, bcast_name, dev_id);
    }
  }
Y
Yu Yang 已提交
307 308 309 310 311
  /*
    Dependency graph has been constructed. However, there are still data
    harzaeds need to be handled.
   */
  PolishGraphToSupportDataHazards(&result);
Y
Yu Yang 已提交
312

Y
Yu Yang 已提交
313 314 315 316 317
  /*
   * Only variables should be the leaves of graph.
   */
  AddOutputToLeafOps(&result);

Y
Yu Yang 已提交
318
  if (VLOG_IS_ON(10)) {
Y
Yancey1989 已提交
319
    std::ofstream fout(FLAGS_ssa_graph_path);
Y
Yancey1989 已提交
320
    PrintGraphviz(*graph, fout);
Y
Yu Yang 已提交
321 322
  }

Y
Yu Yang 已提交
323
  return std::unique_ptr<SSAGraph>(graph);
Y
Yu Yang 已提交
324 325
}

C
fix ci  
chengduoZH 已提交
326
bool MultiDevSSAGraphBuilder::IsSparseGradient(
C
chengduoZH 已提交
327
    const std::unordered_map<std::string, VarDesc *> &all_vars,
C
fix ci  
chengduoZH 已提交
328
    const std::string &og) const {
C
chengduoZH 已提交
329 330
  PADDLE_ENFORCE(all_vars.count(og) != 0);
  if (all_vars.at(og)->GetType() == proto::VarType::SELECTED_ROWS) {
C
fix ci  
chengduoZH 已提交
331 332 333
    return true;
  }
  return false;
334 335
}

C
chengduoZH 已提交
336 337
void MultiDevSSAGraphBuilder::CreateBroadcastOp(SSAGraph *result,
                                                const std::string &p_name,
C
chengduoZH 已提交
338
                                                size_t src_dev_id) const {
C
chengduoZH 已提交
339 340 341 342 343 344 345
#ifdef PADDLE_WITH_CUDA
  auto *op_handle = new BroadcastOpHandle(local_scopes_, places_, nccl_ctxs_);
#else
  auto *op_handle = new BroadcastOpHandle(local_scopes_, places_);
#endif

  result->ops_.emplace_back(op_handle);
C
chengduoZH 已提交
346
  auto *in = result->vars_.at(src_dev_id).at(p_name).back().get();
C
chengduoZH 已提交
347 348 349
  op_handle->AddInput(in);

  for (size_t i = 0; i < places_.size(); ++i) {
C
chengduoZH 已提交
350
    auto &vars = result->vars_.at(i).at(p_name);
C
chengduoZH 已提交
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
    auto &p = places_[i];
    auto *out_var = new VarHandle(vars.size(), i, p_name, p);
    vars.emplace_back(out_var);
    op_handle->AddOutput(out_var);
#ifndef ADDLE_WITH_CUDA
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
#endif
  }
}

void MultiDevSSAGraphBuilder::CreateComputationalOp(SSAGraph *result,
                                                    const OpDesc &op,
                                                    int dev_id) const {
  result->ops_.emplace_back(
      new ComputationOpHandle(op, local_scopes_[dev_id], places_[dev_id]));
  CreateOpHandleIOs(result, op, dev_id);
}

Y
Yu Yang 已提交
370 371 372 373 374 375 376 377 378 379
void MultiDevSSAGraphBuilder::InsertNCCLAllReduceOp(
    SSAGraph *result, const std::string &og) const {
#ifdef PADDLE_WITH_CUDA
  result->ops_.emplace_back(
      new NCCLAllReduceOpHandle(local_scopes_, places_, *nccl_ctxs_));
  auto *op_handle = result->ops_.back().get();

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
    auto &vars = result->vars_[i][og];
Y
Yu Yang 已提交
380 381
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
Y
Yu Yang 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
    op_handle->AddInput(prev_grad.get());

    auto var = new VarHandle(vars.size() - 1, i, og, p);
    vars.emplace_back(var);
    op_handle->AddOutput(var);
  }
#else
  PADDLE_ENFORCE("Not implemented");
#endif
}

bool MultiDevSSAGraphBuilder::IsParameterGradientOnce(
    const std::string &og,
    std::unordered_set<std::string> *og_has_been_broadcast) const {
  bool is_pg_once =
      grad_names_.count(og) != 0 && og_has_been_broadcast->count(og) == 0;
  if (is_pg_once) {
    // Insert NCCL AllReduce Op
    og_has_been_broadcast->insert(og);
  }
  return is_pg_once;
}

C
chengduoZH 已提交
405 406 407
int MultiDevSSAGraphBuilder::GetOpDeviceID(
    const std::vector<std::unordered_set<std::string>> &var_name_on_devices,
    const OpDesc &op) const {
Y
yuyang18 已提交
408
  if (strategy_.reduce_ != BuildStrategy::ReduceStrategy::kReduce) {
C
chengduoZH 已提交
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
    return -1;
  }

  int var_dev_id = -1;
  for (auto &var_name : op.InputArgumentNames()) {
    if (var_dev_id != -1) break;
    for (size_t i = 0; i < var_name_on_devices.size(); ++i) {
      if (var_name_on_devices[i].count(var_name)) {
        var_dev_id = static_cast<int>(i);
        break;
      }
    }
  }
  return var_dev_id;
}

Y
Yu Yang 已提交
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
void MultiDevSSAGraphBuilder::CreateScaleLossGradOp(SSAGraph *result) const {
  for (size_t i = 0; i < places_.size(); ++i) {
// Insert ScaleCost OpHandle
#ifdef PADDLE_WITH_CUDA
    auto *communication_dev_ctx = nccl_ctxs_->DevCtx(places_[i]);
#else
    auto *communication_dev_ctx =
        platform::DeviceContextPool::Instance().Get(platform::CPUPlace());
#endif

    auto *op_handle =
        new ScaleLossGradOpHandle(local_scopes_.size(), local_scopes_[i],
                                  places_[i], communication_dev_ctx);
    result->ops_.emplace_back(op_handle);

    // FIXME: Currently ScaleLossGradOp only use device_count as scale
    // factor. So it does not depend on any other operators.
    // VarHandle *loss = GetVarHandle(loss_var_name, place);
    // loss->pending_ops_.emplace_back(op_handle);
    // op_handle->inputs_.emplace_back(loss);

    CreateOpOutput(result, op_handle, GradVarName(loss_var_name_), places_[i],
                   i);
  }
}

void MultiDevSSAGraphBuilder::CreateComputationalOps(SSAGraph *result,
T
typhoonzero 已提交
452 453 454
                                                     const OpDesc &op,
                                                     size_t num_places) const {
  for (size_t scope_idx = 0; scope_idx < num_places; ++scope_idx) {
Y
Yu Yang 已提交
455 456 457
    auto p = places_[scope_idx];
    auto s = local_scopes_[scope_idx];
    result->ops_.emplace_back(new ComputationOpHandle(op, s, p));
Y
Yu Yang 已提交
458
    CreateOpHandleIOs(result, op, scope_idx);
Y
Yu Yang 已提交
459 460 461
  }
}

C
chengduoZH 已提交
462 463 464
VarHandle *MultiDevSSAGraphBuilder::CreateReduceOp(SSAGraph *result,
                                                   const std::string &og,
                                                   int dst_dev_id) const {
C
chengduoZH 已提交
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
#ifdef PADDLE_WITH_CUDA
  result->ops_.emplace_back(
      new ReduceOpHandle(local_scopes_, places_, nccl_ctxs_));
#else
  result->ops_.emplace_back(new ReduceOpHandle(local_scopes_, places_));
#endif
  auto *op_handle = result->ops_.back().get();

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &vars = result->vars_[i][og];
#ifndef PADDLE_WITH_CUDA
    auto &p = places_[i];
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
#endif
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
    op_handle->AddInput(prev_grad.get());
  }
  auto &vars = result->vars_[dst_dev_id][og];
  auto var =
      new VarHandle(vars.size() - 1, dst_dev_id, og, places_[dst_dev_id]);
  vars.emplace_back(var);
  op_handle->AddOutput(var);
  return var;
}

Y
fix pe  
Yancey1989 已提交
492 493
void MultiDevSSAGraphBuilder::ConnectOp(SSAGraph *result, OpHandleBase *op,
                                        const std::string &prev_op_name) const {
Y
Yancey1989 已提交
494
  for (auto &prev_op : result->ops_) {
Y
fix pe  
Yancey1989 已提交
495
    if (prev_op->Name() == prev_op_name) {
Y
Yancey1989 已提交
496 497 498
      auto *dep_var = new DummyVarHandle();
      prev_op->AddOutput(dep_var);
      result->dep_vars_.emplace(dep_var);
Y
fix pe  
Yancey1989 已提交
499
      op->AddInput(dep_var);
Y
Yancey1989 已提交
500 501 502 503
    }
  }
}

Y
Yancey1989 已提交
504
void MultiDevSSAGraphBuilder::CreateDistTrainOp(SSAGraph *result,
505 506 507
                                                const OpDesc &op,
                                                int place_id) const {
  CreateComputationalOp(result, op, place_id);
Y
Yancey1989 已提交
508 509 510 511 512
  if (op.Type() == "concat") {
    ConnectOp(result, result->ops_.back().get(), "fetch_barrier");
  }
}

513 514 515 516
void MultiDevSSAGraphBuilder::CreateRPCOp(SSAGraph *result, const OpDesc &op,
                                          int place_id) const {
  auto &p = places_[place_id];
  auto *s = local_scopes_[place_id];
Y
Yancey1989 已提交
517
  result->ops_.emplace_back(new RPCOpHandle(op, s, p, op.Type()));
Y
fix pe  
Yancey1989 已提交
518

Y
Yancey1989 已提交
519
  if (op.Type() == "send_barrier") {
Y
fix pe  
Yancey1989 已提交
520
    ConnectOp(result, result->ops_.back().get(), "send_vars");
Y
Yancey1989 已提交
521
  } else if (op.Type() == "recv") {
Y
fix pe  
Yancey1989 已提交
522
    ConnectOp(result, result->ops_.back().get(), "send_barrier");
Y
Yancey1989 已提交
523
  } else if (op.Type() == "fetch_barrier") {
Y
fix pe  
Yancey1989 已提交
524
    ConnectOp(result, result->ops_.back().get(), "recv");
Y
Yancey1989 已提交
525
  } else if (op.Type() == "send_vars") {
Y
Yancey1989 已提交
526 527 528
    // do nothing
  } else {
    PADDLE_THROW(
Y
Yancey1989 已提交
529
        "rpc op should be in ["
Y
Yancey1989 已提交
530 531 532
        "send_vars, send_barrier. recv, fetch_barrier]");
  }

Y
Yancey1989 已提交
533 534
  // TODO(Yancey1989): schedule rpc op on different place may
  // increate throughput
535
  CreateOpHandleIOs(result, op, place_id);
Y
Yu Yang 已提交
536 537 538
}

bool MultiDevSSAGraphBuilder::IsScaleLossOp(const OpDesc &op) const {
Y
yuyang18 已提交
539 540
  return boost::get<int>(
             op.GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
Y
Fix bug  
yuyang18 已提交
541 542 543
             (static_cast<int>(OpRole::kBackward) |
              static_cast<int>(OpRole::kLoss)) &&
         !loss_var_name_.empty();  // If loss_var is empty. This is test mode
Y
Yu Yang 已提交
544
}
Y
Yu Yang 已提交
545 546 547
}  // namespace details
}  // namespace framework
}  // namespace paddle