README_en.md 16.8 KB
Newer Older
1 2
English | [简体中文](README_cn.md)

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
<div align="center">
<p align="center">
  <img src="https://user-images.githubusercontent.com/48054808/160532560-34cf7a1f-d950-435e-90d2-4b0a679e5119.png" align="middle" width = "800" />
</p>

****A High-Efficient Development Toolkit for Object Detection based on [PaddlePaddle](https://github.com/paddlepaddle/paddle).****

[![License](https://img.shields.io/badge/license-Apache%202-blue.svg)](LICENSE)
[![Version](https://img.shields.io/github/release/PaddlePaddle/PaddleDetection.svg)](https://github.com/PaddlePaddle/PaddleDetection/releases)
![python version](https://img.shields.io/badge/python-3.6+-orange.svg)
![support os](https://img.shields.io/badge/os-linux%2C%20win%2C%20mac-yellow.svg)

</div>

## <img src="https://user-images.githubusercontent.com/48054808/157793354-6e7f381a-0aa6-4bb7-845c-9acf2ecc05c3.png" width="20"/> Latest News
18

19
- 🔥 **2022.3.24:PaddleDetection [release 2.4 version](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4)**
W
Wenyu 已提交
20

21
  - Release GPU SOTA object detection series models (s/m/l/x) [PP-YOLOE](configs/ppyoloe), supporting s/m/l/x version, achieving mAP as 51.4% on COCO test dataset and 78.1 FPS on Nvidia V100 by PP-YOLOE-l, supporting AMP training and its training speed is 33% faster than PP-YOLOv2.
22 23
  - Release enhanced models of [PP-PicoDet](configs/picodet), including PP-PicoDet-XS model with 0.7M parameters, its mAP promoted ~2% on COCO, inference speed accelerated 63% on CPU, and post-processing integrated into the network to optimize deployment pipeline.
  - Release real-time human analysis tool [PP-Human](deploy/pphuman), which is based on data from real-life situations, supporting pedestrian detection, attribute recognition, human tracking, multi-camera tracking, human statistics and action recognition.
24
  - Release [YOLOX](configs/yolox), supporting nano/tiny/s/m/l/x version, achieving mAP as 51.8% on COCO val dataset by YOLOX-x.
W
wangguanzhong 已提交
25

W
wangguanzhong 已提交
26
- 2021.11.03: Release [release/2.3](https://github.com/PaddlePaddle/Paddleetection/tree/release/2.3) version. Release mobile object detection model ⚡[PP-PicoDet](configs/picodet), mobile keypoint detection model ⚡[PP-TinyPose](configs/keypoint/tiny_pose),Real-time tracking system [PP-Tracking](deploy/pptracking). Release object detection models, including [Swin-Transformer](configs/faster_rcnn), [TOOD](configs/tood), [GFL](configs/gfl), release [Sniper](configs/sniper) tiny object detection models and optimized [PP-YOLO-EB](configs/ppyolo) model for EdgeBoard. Release mobile keypoint detection model [Lite HRNet](configs/keypoint).
27

K
Kaipeng Deng 已提交
28
- 2021.08.10: Release [release/2.2](https://github.com/PaddlePaddle/Paddleetection/tree/release/2.2) version. Release Transformer object detection models, including [DETR](configs/detr), [Deformable DETR](configs/deformable_detr), [Sparse RCNN](configs/sparse_rcnn). Release [keypoint detection](configs/keypoint) models, including DarkHRNet and model trained on MPII dataset. Release [head-tracking](configs/mot/headtracking21) and [vehicle-tracking](configs/mot/vehicle) multi-object tracking models.
29

30
- 2021.05.20: Release [release/2.1](https://github.com/PaddlePaddle/Paddleetection/tree/release/2.1) version. Release [Keypoint Detection](configs/keypoint), including HigherHRNet and HRNet, [Multi-Object Tracking](configs/mot), including DeepSORT,JDE and FairMOT. Release model compression for PPYOLO series models.Update documents such as [EXPORT ONNX MODEL](deploy/EXPORT_ONNX_MODEL.md).
31

32
## <img title="" src="https://user-images.githubusercontent.com/48054808/157795569-9fc77c85-732f-4870-9be0-99a7fe2cff27.png" alt="" width="20"> Introduction
33

K
Kaipeng Deng 已提交
34
PaddleDetection is an end-to-end object detection development kit based on PaddlePaddle, which implements varied mainstream object detection, instance segmentation, tracking and keypoint detection algorithms in modular designwhich with configurable modules such as network components, data augmentations and losses, and release many kinds SOTA industry practice models, integrates abilities of model compression and cross-platform high-performance deployment, aims to help developers in the whole end-to-end development in a faster and better way.
35

36 37 38 39 40 41 42
#### PaddleDetection provides image processing capabilities such as object detection, instance segmentation, multi-object tracking, keypoint detection and etc.

<div  align="center">
  <img src="docs/images/ppdet.gif" width="800"/>
</div>

#### PaddleDetection covers industrialization, smart city, security & protection, retail, medicare industry and etc.
43

44 45
<div  align="center">
  <img src="https://user-images.githubusercontent.com/48054808/157826886-2e101a71-25a2-42f5-bf5e-30a97be28f46.gif" width="800"/>
46 47
</div>

48
## <img src="https://user-images.githubusercontent.com/48054808/157799599-e6a66855-bac6-4e75-b9c0-96e13cb9612f.png" width="20"/> Features
49

W
Wenyu 已提交
50 51
- **Rich Models**

52
  PaddleDetection provides rich of models, including **250+ pre-trained models** such as **object detection**, **instance segmentation**, **face detection**, **keypoint detection**, **multi-object tracking** and etc, covering a variety of **global competition champion** schemes.
53

54
- **Highly Flexible**
W
Wenyu 已提交
55

56
  Components are designed to be modular. Model architectures, as well as data preprocess pipelines and optimization strategies, can be easily customized with simple configuration changes.
57

W
Wenyu 已提交
58 59
- **Production Ready**

60
  From data augmentation, constructing models, training, compression, depolyment, get through end to end, and complete support for multi-architecture, multi-device deployment for **cloud and edge device**.
61

W
Wenyu 已提交
62 63
- **High Performance**

64
  Based on the high performance core of PaddlePaddle, advantages of training speed and memory occupation are obvious. FP16 training and multi-machine training are supported as well.
65

66
## <img title="" src="https://user-images.githubusercontent.com/48054808/157800467-2a9946ad-30d1-49a9-b9db-ba33413d9c90.png" alt="" width="20"> Community
67

68 69 70
- If you have any problem or suggestion on PaddleDetection, please send us issues through [GitHub Issues](https://github.com/PaddlePaddle/PaddleDetection/issues).

- Welcome to Join PaddleDetection QQ Group and Wechat Group (reply "Det").
W
Wenyu 已提交
71

72 73 74 75 76 77
  <div align="center">
  <img src="https://user-images.githubusercontent.com/48054808/157800129-2f9a0b72-6bb8-4b10-8310-93ab1639253f.jpg"  width = "200" />  
  <img src="https://user-images.githubusercontent.com/48054808/160531099-9811bbe6-cfbb-47d5-8bdb-c2b40684d7dd.png"  width = "200" />  
  </div>

## <img src="https://user-images.githubusercontent.com/48054808/157827140-03ffaff7-7d14-48b4-9440-c38986ea378c.png" width="20"/> Overview of Kit Structures
78

K
Kaipeng Deng 已提交
79
<table align="center">
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
  <tbody>
    <tr align="center" valign="bottom">
      <td>
        <b>Architectures</b>
      </td>
      <td>
        <b>Backbones</b>
      </td>
      <td>
        <b>Components</b>
      </td>
      <td>
        <b>Data Augmentation</b>
      </td>
    </tr>
    <tr valign="top">
      <td>
K
Kaipeng Deng 已提交
97 98
        <ul>
          <li><b>Object Detection</b></li>
99 100 101 102 103 104
          <ul>
            <li>Faster RCNN</li>
            <li>FPN</li>
            <li>Cascade-RCNN</li>
            <li>Libra RCNN</li>
            <li>Hybrid Task RCNN</li>
K
Kaipeng Deng 已提交
105
            <li>PSS-Det</li>
106 107 108
            <li>RetinaNet</li>
            <li>YOLOv3</li>
            <li>YOLOv4</li>  
K
Kaipeng Deng 已提交
109 110
            <li>PP-YOLOv1/v2</li>
            <li>PP-YOLO-Tiny</li>
111 112
            <li>PP-YOLOE</li>
            <li>YOLOX</li>
113 114 115 116
            <li>SSD</li>
            <li>CornerNet-Squeeze</li>
            <li>FCOS</li>  
            <li>TTFNet</li>
K
Kaipeng Deng 已提交
117 118 119 120 121
            <li>PP-PicoDet</li>
            <li>DETR</li>
            <li>Deformable DETR</li>
            <li>Swin Transformer</li>
            <li>Sparse RCNN</li>
122
        </ul>
K
Kaipeng Deng 已提交
123
        <li><b>Instance Segmentation</b></li>
124
        <ul>
K
Kaipeng Deng 已提交
125 126
            <li>Mask RCNN</li>
            <li>SOLOv2</li>
127
        </ul>
K
Kaipeng Deng 已提交
128
        <li><b>Face Detection</b></li>
K
Kaipeng Deng 已提交
129
        <ul>
K
Kaipeng Deng 已提交
130 131 132
            <li>FaceBoxes</li>
            <li>BlazeFace</li>
            <li>BlazeFace-NAS</li>
K
Kaipeng Deng 已提交
133
        </ul>
K
Kaipeng Deng 已提交
134
        <li><b>Multi-Object-Tracking</b></li>
K
Kaipeng Deng 已提交
135
        <ul>
K
Kaipeng Deng 已提交
136 137
            <li>JDE</li>
            <li>FairMOT</li>
138
            <li>DeepSORT</li>
K
Kaipeng Deng 已提交
139
        </ul>
K
Kaipeng Deng 已提交
140
        <li><b>KeyPoint-Detection</b></li>
K
Kaipeng Deng 已提交
141
        <ul>
K
Kaipeng Deng 已提交
142 143
            <li>HRNet</li>
            <li>HigherHRNet</li>
K
Kaipeng Deng 已提交
144
        </ul>
K
Kaipeng Deng 已提交
145
      </ul>
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
      </td>
      <td>
        <ul>
          <li>ResNet(&vd)</li>
          <li>ResNeXt(&vd)</li>
          <li>SENet</li>
          <li>Res2Net</li>
          <li>HRNet</li>
          <li>Hourglass</li>
          <li>CBNet</li>
          <li>GCNet</li>
          <li>DarkNet</li>
          <li>CSPDarkNet</li>
          <li>VGG</li>
          <li>MobileNetv1/v3</li>  
          <li>GhostNet</li>
          <li>Efficientnet</li>  
K
Kaipeng Deng 已提交
163
          <li>BlazeNet</li>  
164 165 166 167 168 169 170 171 172 173 174
        </ul>
      </td>
      <td>
        <ul><li><b>Common</b></li>
          <ul>
            <li>Sync-BN</li>
            <li>Group Norm</li>
            <li>DCNv2</li>
            <li>Non-local</li>
          </ul>  
        </ul>
K
Kaipeng Deng 已提交
175 176 177 178 179
        <ul><li><b>KeyPoint</b></li>
          <ul>
            <li>DarkPose</li>
          </ul>  
        </ul>
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
        <ul><li><b>FPN</b></li>
          <ul>
            <li>BiFPN</li>
            <li>BFP</li>  
            <li>HRFPN</li>
            <li>ACFPN</li>
          </ul>  
        </ul>  
        <ul><li><b>Loss</b></li>
          <ul>
            <li>Smooth-L1</li>
            <li>GIoU/DIoU/CIoU</li>  
            <li>IoUAware</li>
          </ul>  
        </ul>  
        <ul><li><b>Post-processing</b></li>
          <ul>
            <li>SoftNMS</li>
            <li>MatrixNMS</li>  
          </ul>  
        </ul>
        <ul><li><b>Speed</b></li>
          <ul>
            <li>FP16 training</li>
            <li>Multi-machine training </li>  
          </ul>  
        </ul>  
      </td>
      <td>
        <ul>
          <li>Resize</li>  
K
Kaipeng Deng 已提交
211
          <li>Lighting</li>  
212 213 214 215 216 217
          <li>Flipping</li>  
          <li>Expand</li>
          <li>Crop</li>
          <li>Color Distort</li>  
          <li>Random Erasing</li>  
          <li>Mixup </li>
K
Kaipeng Deng 已提交
218
          <li>Mosaic</li>
219
          <li>AugmentHSV</li>
220 221 222
          <li>Cutmix </li>
          <li>Grid Mask</li>
          <li>Auto Augment</li>  
K
Kaipeng Deng 已提交
223
          <li>Random Perspective</li>  
224 225 226 227 228 229 230 231 232
        </ul>  
      </td>  
    </tr>

</td>
    </tr>
  </tbody>
</table>

233
## <img src="https://user-images.githubusercontent.com/48054808/157801371-9a9a8c65-1690-4123-985a-e0559a7f9494.png" width="20"/> Overview of Model Performance
K
Kaipeng Deng 已提交
234 235

The relationship between COCO mAP and FPS on Tesla V100 of representative models of each server side architectures and backbones.
236 237 238

<div align="center">
  <img src="docs/images/fps_map.png" />
239
</div>
240

241
**NOTE:**
242

243
- `CBResNet stands` for `Cascade-Faster-RCNN-CBResNet200vd-FPN`, which has highest mAP on COCO as 53.3%
244

245
- `Cascade-Faster-RCNN` stands for `Cascade-Faster-RCNN-ResNet50vd-DCN`, which has been optimized to 20 FPS inference speed when COCO mAP as 47.8% in PaddleDetection models
246

247
- `PP-YOLO` achieves mAP of 45.9% on COCO and 72.9FPS on Tesla V100. Both precision and speed surpass [YOLOv4](https://arxiv.org/abs/2004.10934)
248

249
- `PP-YOLO v2` is optimized version of `PP-YOLO` which has mAP of 49.5% and 68.9FPS on Tesla V100
W
Wenyu 已提交
250
- `PP-YOLOE` is optimized version of `PP-YOLO v2` which has mAP of 51.4% and 78.1FPS on Tesla V100
251
- All these models can be get in [Model Zoo](#ModelZoo)
K
Kaipeng Deng 已提交
252 253 254 255

The relationship between COCO mAP and FPS on Qualcomm Snapdragon 865 of representative mobile side models.

<div align="center">
256
  <img src="docs/images/mobile_fps_map.png" width=600/>
K
Kaipeng Deng 已提交
257 258 259
</div>

**NOTE:**
260

261
- All data tested on Qualcomm Snapdragon 865(4*A77 + 4*A55) processor with batch size of 1 and CPU threads of 4, and use NCNN library in testing, benchmark scripts is publiced at [MobileDetBenchmark](https://github.com/JiweiMaster/MobileDetBenchmark)
K
Kaipeng Deng 已提交
262
- [PP-PicoDet](configs/picodet) and [PP-YOLO-Tiny](configs/ppyolo) are developed and released by PaddleDetection, other models are not provided in PaddleDetection.
263

264
## <img src="https://user-images.githubusercontent.com/48054808/157828296-d5eb0ccb-23ea-40f5-9957-29853d7d13a9.png" width="20"/> Tutorials
265 266 267

### Get Started

qq_30618961's avatar
qq_30618961 已提交
268 269 270
- [Installation guide](docs/tutorials/INSTALL.md)
- [Prepare dataset](docs/tutorials/PrepareDataSet_en.md)
- [Quick start on PaddleDetection](docs/tutorials/GETTING_STARTED.md)
271 272 273 274

### Advanced Tutorials

- Parameter configuration
W
Wenyu 已提交
275

qq_30618961's avatar
qq_30618961 已提交
276 277
  - [Parameter configuration for RCNN model](docs/tutorials/config_annotation/faster_rcnn_r50_fpn_1x_coco_annotation_en.md)
  - [Parameter configuration for PP-YOLO model](docs/tutorials/config_annotation/ppyolo_r50vd_dcn_1x_coco_annotation_en.md)
278 279

- Model Compression(Based on [PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim))
W
Wenyu 已提交
280

281 282 283
  - [Prune/Quant/Distill](configs/slim)

- Inference and deployment
W
Wenyu 已提交
284

qq_30618961's avatar
qq_30618961 已提交
285 286
  - [Export model for inference](deploy/EXPORT_MODEL_en.md)
  - [Paddle Inference](deploy/README_en.md)
287 288
    - [Python inference](deploy/python)
    - [C++ inference](deploy/cpp)
G
Guanghua Yu 已提交
289
  - [Paddle-Lite](deploy/lite)
W
wangguanzhong 已提交
290
  - [Paddle Serving](deploy/serving)
qq_30618961's avatar
qq_30618961 已提交
291 292
  - [Export ONNX model](deploy/EXPORT_ONNX_MODEL_en.md)
  - [Inference benchmark](deploy/BENCHMARK_INFER_en.md)
293
  - [Exporting to ONNX and using OpenVINO for inference](docs/advanced_tutorials/openvino_inference/README.md)
294 295

- Advanced development
W
Wenyu 已提交
296

qq_30618961's avatar
qq_30618961 已提交
297
  - [New data augmentations](docs/advanced_tutorials/READER_en.md)
298
  - [New detection algorithms](docs/advanced_tutorials/MODEL_TECHNICAL.md)
299

300
## <img src="https://user-images.githubusercontent.com/48054808/157829890-a535b8a6-631c-4c87-b861-64d4b32b2d6a.png" width="20"/> Model Zoo
301 302 303

- Universal object detection
  - [Model library and baselines](docs/MODEL_ZOO_cn.md)
304
  - [PP-YOLOE](configs/ppyoloe/README_cn.md)
305
  - [PP-YOLO](configs/ppyolo/README.md)
W
wangguanzhong 已提交
306
  - [PP-PicoDet](configs/picodet/README.md)
qq_30618961's avatar
qq_30618961 已提交
307 308 309 310
  - [Enhanced Anchor Free model--TTFNet](configs/ttfnet/README_en.md)
  - [Mobile models](static/configs/mobile/README_en.md)
  - [676 classes of object detection](static/docs/featured_model/LARGE_SCALE_DET_MODEL_en.md)
  - [Two-stage practical PSS-Det](configs/rcnn_enhance/README_en.md)
311
  - [SSLD pretrained models](docs/feature_models/SSLD_PRETRAINED_MODEL_en.md)
312 313 314
- Universal instance segmentation
  - [SOLOv2](configs/solov2/README.md)
- Rotation object detection
qq_30618961's avatar
qq_30618961 已提交
315
  - [S2ANet](configs/dota/README_en.md)
G
Guanghua Yu 已提交
316
- [Keypoint detection](configs/keypoint)
W
wangguanzhong 已提交
317
  - [PP-TinyPose](configs/keypoint/tiny_pose)
G
Guanghua Yu 已提交
318
  - HigherHRNet
319
  - HRNet
320
  - LiteHRNet
G
Guanghua Yu 已提交
321
- [Multi-Object Tracking](configs/mot/README.md)
W
wangguanzhong 已提交
322
  - [PP-Tracking](deploy/pptracking/README.md)
G
Guanghua Yu 已提交
323 324 325
  - [DeepSORT](configs/mot/deepsort/README.md)
  - [JDE](configs/mot/jde/README.md)
  - [FairMOT](configs/mot/fairmot/README.md)
326
  - [ByteTrack](configs/mot/bytetrack/README.md)
327
- Vertical field
qq_30618961's avatar
qq_30618961 已提交
328
  - [Face detection](configs/face_detection/README_en.md)
329 330
  - [Pedestrian detection](configs/pedestrian/README.md)
  - [Vehicle detection](configs/vehicle/README.md)
331
  - [Real-Time Human Analysis Tool PP-Human](deploy/pphuman)
332
- Competition Plan
qq_30618961's avatar
qq_30618961 已提交
333 334
  - [Objects365 2019 Challenge champion model](static/docs/featured_model/champion_model/CACascadeRCNN_en.md)
  - [Best single model of Open Images 2019-Object Detection](static/docs/featured_model/champion_model/OIDV5_BASELINE_MODEL_en.md)
335

336
## <img title="" src="https://user-images.githubusercontent.com/48054808/157836473-1cf451fa-f01f-4148-ba68-b6d06d5da2f9.png" alt="" width="20"> Applications
337 338

- [Christmas portrait automatic generation tool](static/application/christmas)
W
wangguanzhong 已提交
339
- [Android Fitness Demo](https://github.com/zhiboniu/pose_demo_android)
340

341
## <img src="https://user-images.githubusercontent.com/48054808/157835981-ef6057b4-6347-4768-8fcc-cd07fcc3d8b0.png" width="20"/> Updates
342

343
For the details of version update, please refer to [Version Update Doc](docs/CHANGELOG.md).
344

345
## <img title="" src="https://user-images.githubusercontent.com/48054808/157835345-f5d24128-abaf-4813-b793-d2e5bdc70e5a.png" alt="" width="20"> License
346 347 348

PaddleDetection is released under the [Apache 2.0 license](LICENSE).

349
## <img src="https://user-images.githubusercontent.com/48054808/157835796-08d4ffbc-87d9-4622-89d8-cf11a44260fc.png" width="20"/> Contribution
350 351

Contributions are highly welcomed and we would really appreciate your feedback!!
352

353
- Thanks [Mandroide](https://github.com/Mandroide) for cleaning the code and unifying some function interface.
354
- Thanks [FL77N](https://github.com/FL77N/) for contributing the code of `Sparse-RCNN` model.
W
Wenyu 已提交
355
- Thanks [Chen-Song](https://github.com/Chen-Song) for contributing the code of `Swin Faster-RCNN` model.
W
wangguanzhong 已提交
356
- Thanks [yangyudong](https://github.com/yangyudong2020), [hchhtc123](https://github.com/hchhtc123) for contributing PP-Tracking GUI interface.
W
wangguanzhong 已提交
357
- Thanks [Shigure19](https://github.com/Shigure19) for contributing PP-TinyPose fitness APP.
358

359
## <img src="https://user-images.githubusercontent.com/48054808/157835276-9aab9d1c-1c46-446b-bdd4-5ab75c5cfa48.png" width="20"/> Citation
360 361 362 363 364 365 366 367 368

```
@misc{ppdet2019,
title={PaddleDetection, Object detection and instance segmentation toolkit based on PaddlePaddle.},
author={PaddlePaddle Authors},
howpublished = {\url{https://github.com/PaddlePaddle/PaddleDetection}},
year={2019}
}
```