param_attr.py 6.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
F
fengjiayi 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
F
fengjiayi 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
F
update  
fengjiayi 已提交
14

Y
Yu Yang 已提交
15 16 17
from initializer import Initializer, Xavier, Constant
from regularizer import WeightDecayRegularizer

18 19 20 21
__all__ = [
    'ParamAttr',
    'WeightNormParamAttr',
]
Y
Yu Yang 已提交
22

Y
Yu Yang 已提交
23 24

class ParamAttr(object):
C
chengduoZH 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
    """
    Parameter attributes object. To fine-tuning network training process, user
    can set parameter's attributes to control training details. Such as learning rate,
    regularization, trainable, do_model_average and the method to initialize param.


    Args:
        name(str): The parameter's name. Default None.
        initializer(Initializer): The method to initial this parameter. Default None.
        learning_rate(float): The parameter's learning rate. The learning rate when
            optimize is :math:`global\_lr * parameter\_lr * scheduler\_factor`.
            Default 1.0.
        regularizer(WeightDecayRegularizer): Regularization factor. Default None.
        trainable(bool): Whether this parameter is trainable. Default True.
        gradient_clip(BaseGradientClipAttr): The method to clip this parameter's
            gradient. Default None.
        do_model_average(bool): Whether this parameter should do model average.
            Default False.

    Examples:
        .. code-block:: python

            w_param_attrs = fluid.ParamAttr(name="fc_weight",
                                            learning_rate=0.5,
                                            regularizer=fluid.L2Decay(1.0),
                                            trainable=True)
            y_predict = fluid.layers.fc(input=x, size=10, param_attr=w_param_attrs)
    """

Y
Yu Yang 已提交
54 55 56 57 58
    def __init__(self,
                 name=None,
                 initializer=None,
                 learning_rate=1.0,
                 regularizer=None,
Y
Yu Yang 已提交
59
                 trainable=True,
W
wanghaoshuang 已提交
60
                 gradient_clip=None,
C
chengduoZH 已提交
61
                 do_model_average=False):
Y
Yu Yang 已提交
62 63 64 65 66
        self.name = name
        self.initializer = initializer
        self.learning_rate = learning_rate
        self.regularizer = regularizer
        self.trainable = trainable
F
fengjiayi 已提交
67
        self.gradient_clip = gradient_clip
W
wanghaoshuang 已提交
68
        self.model_average = do_model_average
Y
Yu Yang 已提交
69 70

    def set_default_initializer(self, initializer):
C
chengduoZH 已提交
71 72 73 74
        """
        Set the default initializer, the initializer should be Constant,
        Uniform, Normal, Xavier, MSRA.
        """
Y
Yu Yang 已提交
75 76 77 78 79 80 81 82 83 84 85
        if initializer is None:
            if self.initializer is None:
                raise ValueError("ParamAttr.initializer is not set")
            return

        if self.initializer is not None:
            return

        self.initializer = initializer

    def set_default_param_initializer(self):
C
chengduoZH 已提交
86 87 88
        """
        Set the default initializer for the parameter with Xavier.
        """
Y
Yu Yang 已提交
89 90 91
        self.set_default_initializer(Xavier())

    def set_default_bias_initializer(self):
C
chengduoZH 已提交
92 93 94
        """
        Set the default initializer for the bias with Constant(0.0).
        """
Y
Yu Yang 已提交
95 96 97 98
        self.set_default_initializer(Constant(0.0))

    @staticmethod
    def to_attr(arg):
C
chengduoZH 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112
        """
        Create ParamAttr[s].

        Args:
            arg: Arguments to initialize ParamAttr[s]. arg's type can be
                str, Initializer, float, WeightDecayRegularizer, BaseGradientClipAttr,
                bool, ParamAttr, or a list of above type.

        Returns:
            ParamAttr[s]: ParamAttr[s] initialized with arg.

        Raises:
            arg can not initialize a ParamAttr.
        """
Y
Yu Yang 已提交
113 114
        if arg is None:
            return ParamAttr()
115 116
        elif isinstance(arg, list) or isinstance(arg, tuple):
            return [ParamAttr.to_attr(a) for a in arg]
Y
Yu Yang 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130
        elif isinstance(arg, ParamAttr):
            return arg
        elif isinstance(arg, str) or isinstance(arg, unicode):
            return ParamAttr(name=arg)
        elif isinstance(arg, Initializer):
            return ParamAttr(initializer=arg)
        elif isinstance(arg, WeightDecayRegularizer):
            return ParamAttr(regularizer=arg)
        elif isinstance(arg, bool):
            return ParamAttr.to_attr(None) if arg else False
        else:
            raise TypeError("{0} cast to ParamAttr".format(type(arg)))

    def to_kwargs(self, with_initializer=False):
C
chengduoZH 已提交
131 132 133 134 135 136 137 138 139
        """
        Returns the attributes of this parameter.

        Args:
            with_initializer(bool): Whether to add initializer attr.

        Returns:
            Parameter attributes(map): The attributes of this parameter.
        """
Y
Yu Yang 已提交
140 141
        kwargs = {
            'name': self.name,
G
guosheng 已提交
142 143 144
            'optimize_attr': {
                'learning_rate': self.learning_rate
            },
Y
Yu Yang 已提交
145
            'regularizer': self.regularizer,
Y
Yu Yang 已提交
146
            'trainable': self.trainable,
W
wanghaoshuang 已提交
147
            'gradient_clip_attr': self.gradient_clip,
W
wanghaoshuang 已提交
148
            'model_average': self.model_average
Y
Yu Yang 已提交
149 150 151 152
        }
        if with_initializer:
            kwargs['initializer'] = self.initializer
        return kwargs
G
guosheng 已提交
153 154 155 156


class WeightNormParamAttr(ParamAttr):
    """
C
chengduoZH 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
    Used for weight Norm. Weight Norm is a reparameterization of the weight vectors
    in a neural network that decouples the length of those weight vectors from
    their direction. Weight Norm has been implemented as discussed in this
    paper: `Weight Normalization: A Simple Reparameterization to Accelerate
    Training of Deep Neural Networks
    <https://arxiv.org/pdf/1602.07868.pdf>`_.

    Args:
        dim(list): The parameter's name. Default None.
        kwargs: Any field in ParamAttr. Default None.

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name="data", shape=[3, 32, 32], dtype="float32")
            fc = fluid.layers.fc(input=data,
                                 size=1000,
                                 param_attr=WeightNormParamAttr(
                                      dim=None,
                                      name='weight_norm_param'))

G
guosheng 已提交
178 179 180
    """
    # List to record the parameters reparameterized by weight normalization.
    # If these parameters are treated as Variable rather than Parameter,
181
    # it can be used to discriminate these parameters and help to serialize
G
guosheng 已提交
182 183 184 185 186 187
    # these paramters for inference.
    params_with_weight_norm = []

    def __init__(self, dim=None, **kwargs):
        super(WeightNormParamAttr, self).__init__(**kwargs)
        self.dim = dim