Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
cfb4617b
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
cfb4617b
编写于
6月 19, 2018
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add Doc param attr
上级
5ea039b3
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
84 addition
and
4 deletion
+84
-4
python/paddle/fluid/param_attr.py
python/paddle/fluid/param_attr.py
+84
-4
未找到文件。
python/paddle/fluid/param_attr.py
浏览文件 @
cfb4617b
...
...
@@ -22,6 +22,35 @@ __all__ = [
class
ParamAttr
(
object
):
"""
Parameter attributes object. To fine-tuning network training process, user
can set parameter's attributes to control training details. Such as learning rate,
regularization, trainable, do_model_average and the method to initialize param.
Args:
name(str): The parameter's name. Default None.
initializer(Initializer): The method to initial this parameter. Default None.
learning_rate(float): The parameter's learning rate. The learning rate when
optimize is :math:`global\_lr * parameter\_lr * scheduler\_factor`.
Default 1.0.
regularizer(WeightDecayRegularizer): Regularization factor. Default None.
trainable(bool): Whether this parameter is trainable. Default True.
gradient_clip(BaseGradientClipAttr): The method to clip this parameter's
gradient. Default None.
do_model_average(bool): Whether this parameter should do model average.
Default False.
Examples:
.. code-block:: python
w_param_attrs = fluid.ParamAttr(name="fc_weight",
learning_rate=0.5,
regularizer=fluid.L2Decay(1.0),
trainable=True)
y_predict = fluid.layers.fc(input=x, size=10, param_attr=w_param_attrs)
"""
def
__init__
(
self
,
name
=
None
,
initializer
=
None
,
...
...
@@ -29,7 +58,7 @@ class ParamAttr(object):
regularizer
=
None
,
trainable
=
True
,
gradient_clip
=
None
,
do_model_average
=
Non
e
):
do_model_average
=
Fals
e
):
self
.
name
=
name
self
.
initializer
=
initializer
self
.
learning_rate
=
learning_rate
...
...
@@ -39,6 +68,10 @@ class ParamAttr(object):
self
.
model_average
=
do_model_average
def
set_default_initializer
(
self
,
initializer
):
"""
Set the default initializer, the initializer should be Constant,
Uniform, Normal, Xavier, MSRA.
"""
if
initializer
is
None
:
if
self
.
initializer
is
None
:
raise
ValueError
(
"ParamAttr.initializer is not set"
)
...
...
@@ -50,13 +83,33 @@ class ParamAttr(object):
self
.
initializer
=
initializer
def
set_default_param_initializer
(
self
):
"""
Set the default initializer for the parameter with Xavier.
"""
self
.
set_default_initializer
(
Xavier
())
def
set_default_bias_initializer
(
self
):
"""
Set the default initializer for the bias with Constant(0.0).
"""
self
.
set_default_initializer
(
Constant
(
0.0
))
@
staticmethod
def
to_attr
(
arg
):
"""
Create ParamAttr[s].
Args:
arg: Arguments to initialize ParamAttr[s]. arg's type can be
str, Initializer, float, WeightDecayRegularizer, BaseGradientClipAttr,
bool, ParamAttr, or a list of above type.
Returns:
ParamAttr[s]: ParamAttr[s] initialized with arg.
Raises:
arg can not initialize a ParamAttr.
"""
if
arg
is
None
:
return
ParamAttr
()
elif
isinstance
(
arg
,
list
)
or
isinstance
(
arg
,
tuple
):
...
...
@@ -75,6 +128,15 @@ class ParamAttr(object):
raise
TypeError
(
"{0} cast to ParamAttr"
.
format
(
type
(
arg
)))
def
to_kwargs
(
self
,
with_initializer
=
False
):
"""
Returns the attributes of this parameter.
Args:
with_initializer(bool): Whether to add initializer attr.
Returns:
Parameter attributes(map): The attributes of this parameter.
"""
kwargs
=
{
'name'
:
self
.
name
,
'optimize_attr'
:
{
...
...
@@ -92,9 +154,27 @@ class ParamAttr(object):
class
WeightNormParamAttr
(
ParamAttr
):
"""
Used for weight normalization. Any field in ParamAttr can also be set here.
Besides, an extra field dim can be set to indicate the dimension except
which to normalize.
Used for weight Norm. Weight Norm is a reparameterization of the weight vectors
in a neural network that decouples the length of those weight vectors from
their direction. Weight Norm has been implemented as discussed in this
paper: `Weight Normalization: A Simple Reparameterization to Accelerate
Training of Deep Neural Networks
<https://arxiv.org/pdf/1602.07868.pdf>`_.
Args:
dim(list): The parameter's name. Default None.
kwargs: Any field in ParamAttr. Default None.
Examples:
.. code-block:: python
data = fluid.layers.data(name="data", shape=[3, 32, 32], dtype="float32")
fc = fluid.layers.fc(input=data,
size=1000,
param_attr=WeightNormParamAttr(
dim=None,
name='weight_norm_param'))
"""
# List to record the parameters reparameterized by weight normalization.
# If these parameters are treated as Variable rather than Parameter,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录