optimizer.py 52.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
W
wanghaoshuang 已提交
16
import re
17
import sys
18
from collections import defaultdict
19
from paddle.fluid.framework import Program, Variable, name_scope, default_main_program
20 21 22 23 24 25 26 27 28
from . import framework
from . import layers
from .backward import append_backward
from .framework import program_guard
from . import unique_name
from .initializer import Constant
from .layer_helper import LayerHelper
from .regularizer import append_regularization_ops
from .clip import append_gradient_clip_ops, error_clip_callback
29
from contextlib import contextmanager
S
sneaxiy 已提交
30
from .layers import ops
31

32
__all__ = [
Q
qiaolongfei 已提交
33
    'SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'DecayedAdagrad', 'Ftrl',
34
    'SGDOptimizer', 'MomentumOptimizer', 'AdagradOptimizer', 'AdamOptimizer',
W
weixing02 已提交
35
    'AdamaxOptimizer', 'DecayedAdagradOptimizer', 'RMSPropOptimizer',
36 37
    'FtrlOptimizer', 'Adadelta', 'ModelAverage', 'LarsMomentum',
    'LarsMomentumOptimizer'
38
]
Q
Qiao Longfei 已提交
39 40 41 42 43 44


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
45 46
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
47 48
    """

X
Xin Pan 已提交
49
    def __init__(self, learning_rate, regularization=None, name=None):
50 51
        if not isinstance(learning_rate, float) and \
                not isinstance(learning_rate, framework.Variable):
Q
qiaolongfei 已提交
52
            raise TypeError("learning rate should be float or Variable")
W
whs 已提交
53
        self._name = name
D
dzhwinter 已提交
54
        self.regularization = regularization
55
        self._learning_rate = learning_rate
D
dzhwinter 已提交
56 57
        # the learning rate type should be inferenced from loss
        self._dtype = None
58 59
        # each program should have a independent learning rate
        # program -> Variable(learning_rate)
Q
qiaolongfei 已提交
60
        self._learning_rate_map = dict()
61 62 63
        if isinstance(self._learning_rate, framework.Variable):
            self._learning_rate_map[framework.default_main_program(
            )] = self._learning_rate
64 65 66 67 68
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
Q
Qiao Longfei 已提交
69
        self.helper = None
Q
Qiao Longfei 已提交
70

Q
Qiao Longfei 已提交
71
    def _create_global_learning_rate(self):
Y
yuyang18 已提交
72
        lr = self._global_learning_rate()
Q
Qiao Longfei 已提交
73

74 75 76 77
        if isinstance(lr, framework.Variable):
            return
        else:
            if not isinstance(self._learning_rate, float):
Q
qiaolongfei 已提交
78
                raise TypeError(
79 80
                    "learning rate variable is create outside optimizer,"
                    "can not create new learning rate variable for new program")
Q
Qiao Longfei 已提交
81

82 83 84 85 86 87
        # create learning rate in the current main program
        self._learning_rate_map[framework.default_main_program(
        )] = layers.create_global_var(
            name=unique_name.generate("learning_rate"),
            shape=[1],
            value=float(self._learning_rate),
D
dzhwinter 已提交
88
            dtype='float32' if self._dtype == None else self._dtype,
89 90
            persistable=True)

Y
yuyang18 已提交
91
    def _global_learning_rate(self, program=None):
Q
Qiao Longfei 已提交
92 93 94 95
        """
        get global decayed learning rate
        :return:
        """
96 97
        if program is None:
            program = framework.default_main_program()
Q
qiaolongfei 已提交
98
        return self._learning_rate_map.get(program, None)
Q
Qiao Longfei 已提交
99

Q
Qiao Longfei 已提交
100 101 102 103 104
    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

105 106 107 108
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
W
Wu Yi 已提交
109 110
        if type(param_lr) == Variable:
            return param_lr
Q
qiaolongfei 已提交
111
        else:
W
Wu Yi 已提交
112
            if param_lr == 1.0:
Y
yuyang18 已提交
113
                return self._global_learning_rate()
W
Wu Yi 已提交
114
            else:
X
Xin Pan 已提交
115 116 117
                with default_main_program()._lr_schedule_guard(
                        is_with_opt=True), framework.name_scope(
                            'scale_with_param_lr'):
118
                    return self._global_learning_rate() * param_lr
119 120 121 122 123 124 125

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
126
        """
127 128
        pass

129
    def _finish_update(self, block, parameters_and_grads):
130 131 132 133 134 135 136 137
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
Q
qiaolongfei 已提交
138
            None
139 140 141
        """
        pass

142 143 144 145 146 147
    def _add_accumulator(self,
                         name,
                         param,
                         dtype=None,
                         fill_value=0.0,
                         shape=None):
148 149 150 151 152 153 154 155 156
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
W
whs 已提交
157 158
        if self._name is not None:
            name = self._name + "_" + name
159 160
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
161
            raise Exception("Accumulator {} already exists for parameter {}".
162
                            format(name, param.name))
163 164
        if shape == None:
            shape = param.shape
Q
Qiao Longfei 已提交
165 166
        assert isinstance(self.helper, LayerHelper)
        var = self.helper.create_global_variable(
Y
Yu Yang 已提交
167
            name=unique_name.generate(name),
Q
Qiao Longfei 已提交
168
            persistable=True,
F
fengjiayi 已提交
169
            dtype=dtype or param.dtype,
Q
Qiao Longfei 已提交
170
            type=param.type,
171
            shape=shape)
Q
Qiao Longfei 已提交
172
        self.helper.set_variable_initializer(
173
            var, initializer=Constant(value=float(fill_value)))
Q
Qiao Longfei 已提交
174
        self._accumulators[name][param.name] = var
175
        return var
176 177 178 179 180 181 182 183 184 185 186

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
W
whs 已提交
187 188
        if self._name is not None:
            name = self._name + "_" + name
189 190 191 192 193 194
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

Y
yuyang18 已提交
195 196 197 198
    def _create_optimization_pass(self,
                                  parameters_and_grads,
                                  loss,
                                  startup_program=None):
Q
Qiao Longfei 已提交
199 200 201
        """Add optimization operators to update gradients to variables.

        Args:
Q
qiaolongfei 已提交
202 203 204
          loss(Variable): the target that this optimization is for.
          parameters_and_grads(list(tuple(Variable, Variable))):
          a list of (variable, gradient) pair to update.
Q
Qiao Longfei 已提交
205 206

        Returns:
207 208 209 210
          return_op_list: a list of operators that will complete one step of
          optimization. This will include parameter update ops, global step
          update ops and any other custom ops required by subclasses to manage
          their internal state.
Q
Qiao Longfei 已提交
211
        """
212 213 214 215 216
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
217
        # for parameters and extend _finish_update method to add custom ops.
218 219

        # Create any accumulators
Q
Qiao Longfei 已提交
220
        program = loss.block.program
D
dzhwinter 已提交
221
        self._dtype = loss.dtype
222
        with program_guard(program, startup_program):
Y
Yancey1989 已提交
223 224
            global_block = framework.default_main_program().global_block()
            start = len(global_block.ops)
225 226 227
            self.helper = LayerHelper(self.__class__.__name__)
            self._create_accumulators(loss.block,
                                      [p[0] for p in parameters_and_grads])
Q
Qiao Longfei 已提交
228
            self._create_global_learning_rate()
229 230 231

            optimize_ops = []
            for param_and_grad in parameters_and_grads:
232 233
                if param_and_grad[1] is None:
                    continue
W
Wu Yi 已提交
234
                with param_and_grad[0].block.program._optimized_guard(
235
                        param_and_grad), name_scope("optimizer"):
236
                    if param_and_grad[0].trainable is True:
Y
yuyang18 已提交
237 238 239
                        optimize_op = self._append_optimize_op(loss.block,
                                                               param_and_grad)
                        optimize_ops.append(optimize_op)
240 241 242

            # Get custom finish ops for subclasses
            # FIXME: Need to fix this once we figure out how to handle dependencies
243
            self._finish_update(loss.block, parameters_and_grads)
244

Y
Yancey1989 已提交
245
            end = len(global_block.ops)
W
Wu Yi 已提交
246
            return global_block._slice_ops(start, end)
Q
Qiao Longfei 已提交
247

Q
Qiao Longfei 已提交
248 249
    def minimize(self,
                 loss,
250
                 startup_program=None,
Q
Qiao Longfei 已提交
251 252
                 parameter_list=None,
                 no_grad_set=None):
Q
Qiao Longfei 已提交
253 254
        """Add operations to minimize `loss` by updating `parameter_list`.

F
fengjiayi 已提交
255
        This method combines interface `append_backward()` and
Q
Qiao Longfei 已提交
256 257
        `create_optimization_pass()` into one.
        """
F
fengjiayi 已提交
258
        params_grads = append_backward(loss, parameter_list, no_grad_set,
Y
Yang Yang 已提交
259
                                       [error_clip_callback])
Y
Yu Yang 已提交
260

Y
Yu Yang 已提交
261 262
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

Y
Yu Yang 已提交
263 264
        params_grads = append_gradient_clip_ops(params_grads)

F
fengjiayi 已提交
265
        # Add regularization if any
D
dzhwinter 已提交
266 267
        params_grads = append_regularization_ops(params_grads,
                                                 self.regularization)
Y
Yu Yang 已提交
268

Y
yuyang18 已提交
269 270
        optimize_ops = self._create_optimization_pass(params_grads, loss,
                                                      startup_program)
T
typhoonzero 已提交
271
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
272 273 274


class SGDOptimizer(Optimizer):
Q
qiaolongfei 已提交
275 276 277 278 279 280 281 282 283 284
    """
    Optimizer of the stochastic gradient descent algorithm.

    .. math::

        param\_out = param - learning\_rate * grad

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
X
Xin Pan 已提交
285 286 287
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
288 289 290 291

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
292
            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.2)
Q
qiaolongfei 已提交
293
            sgd_optimizer.minimize(cost)
Q
Qiao Longfei 已提交
294 295
    """

X
Xin Pan 已提交
296
    def __init__(self, learning_rate, regularization=None, name=None):
Q
Qiao Longfei 已提交
297
        assert learning_rate is not None
Q
Qiao Longfei 已提交
298
        super(SGDOptimizer, self).__init__(
X
Xin Pan 已提交
299 300 301
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
Q
Qiao Longfei 已提交
302 303
        self.type = "sgd"

304 305
    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
306

Q
Qiao Longfei 已提交
307 308 309 310 311 312
        # create the optimize op
        sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
313
                "LearningRate": self._create_param_lr(param_and_grad)
Q
Qiao Longfei 已提交
314
            },
315
            outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
316 317

        return sgd_op
318 319 320


class MomentumOptimizer(Optimizer):
Q
qiaolongfei 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333 334
    """

    Simple Momentum optimizer with velocity state

    This optimizer has a flag for Nestrov Momentum.

    The update equations are as follows:

    .. math::

        & velocity = mu * velocity + gradient

        & if (use\_nesterov):

335
        &\quad   param = param - (gradient + mu * velocity) * learning\_rate
Q
qiaolongfei 已提交
336 337 338

        & else:

Q
qiaolongfei 已提交
339
        &\quad   param = param - learning\_rate * velocity
Q
qiaolongfei 已提交
340 341 342 343 344 345

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        momentum (float): momentum factor
        use_nesterov (bool): enables Nesterov momentum
X
Xin Pan 已提交
346 347 348
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
349 350 351 352

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
353
            optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
Q
qiaolongfei 已提交
354
            optimizer.minimize(cost)
355 356 357
    """
    _velocity_acc_str = "velocity"

X
Xin Pan 已提交
358 359 360 361 362 363
    def __init__(self,
                 learning_rate,
                 momentum,
                 use_nesterov=False,
                 regularization=None,
                 name=None):
364 365
        assert learning_rate is not None
        assert momentum is not None
Q
Qiao Longfei 已提交
366
        super(MomentumOptimizer, self).__init__(
X
Xin Pan 已提交
367 368 369
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
370 371
        self.type = "momentum"
        self._momentum = momentum
372
        self._use_nesterov = bool(use_nesterov)
373 374 375 376 377

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
378
            self._add_accumulator(self._velocity_acc_str, p)
379 380 381 382 383 384 385 386 387 388 389 390 391

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
392
                "LearningRate": self._create_param_lr(param_and_grad)
393 394 395 396 397
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
398
            attrs={"mu": self._momentum,
399
                   "use_nesterov": self._use_nesterov})
400 401

        return momentum_op
402 403


404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
class LarsMomentumOptimizer(Optimizer):
    """
    Momentum optimizer with LARS support

    The update equations are as follows:

    .. math::

        & local\_learning\_rate = learning\_rate * lars\_coeff * \\
          \\frac{||param||}{||gradient|| + lars\_weight\_decay * ||param||}

        & velocity = mu * velocity + local\_learning\_rate * (gradient + lars\_weight\_decay * param)

        & param = param - velocity

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        momentum (float): momentum factor
        lars_coeff (float): defines how much we trust the layer to change its weights.
        lars_weight_decay (float): weight decay coefficient for decaying using LARS.
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
        

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.LarsMomentum(learning_rate=0.2, momentum=0.1, lars_weight_decay=0.001)
            optimizer.minimize(cost)
    """
    _velocity_acc_str = "velocity"

    def __init__(self,
                 learning_rate,
                 momentum,
                 lars_coeff=0.001,
                 lars_weight_decay=0.0005,
                 regularization=None,
                 name=None):
        assert learning_rate is not None
        assert momentum is not None
        super(LarsMomentumOptimizer, self).__init__(
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
        self.type = "lars_momentum"
        self._momentum = momentum
        self._lars_coeff = float(lars_coeff)
        self._lars_weight_decay = float(lars_weight_decay)

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._velocity_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
            attrs={
                "mu": self._momentum,
                "lars_coeff": self._lars_coeff,
                "lars_weight_decay": self._lars_weight_decay
            })

        return momentum_op


489
class AdagradOptimizer(Optimizer):
Q
qiaolongfei 已提交
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
    """
    **Adaptive Gradient Algorithm (Adagrad)**

    The update is done as follows:

    .. math::

        moment\_out &= moment + grad * grad

        param\_out &= param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

    The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
    does not have the epsilon attribute. It is added here in our implementation
    as also proposed here: http://cs231n.github.io/neural-networks-3/#ada
    for numerical stability to avoid the division by zero error.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
510 511 512
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
513 514 515 516 517 518

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adagrad(learning_rate=0.2)
            optimizer.minimize(cost)
519 520 521
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
522 523 524 525 526
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
                 regularization=None,
                 name=None):
527 528
        assert learning_rate is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
529
        super(AdagradOptimizer, self).__init__(
X
Xin Pan 已提交
530 531 532
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
533 534 535 536 537 538 539
        self.type = "adagrad"
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
540
            self._add_accumulator(self._moment_acc_str, p)
541 542 543 544 545 546 547

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

548
        # Create the adagrad optimizer op
549 550 551 552 553 554
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
555
                "LearningRate": self._create_param_lr(param_and_grad)
556 557 558 559 560 561
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return adagrad_op
562 563 564


class AdamOptimizer(Optimizer):
Q
qiaolongfei 已提交
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
    """
    This implements the Adam optimizer from Section 2 of the Adam
    paper : https://arxiv.org/abs/1412.6980.
    Adam is a first-order gradient-based optimization method based on
    adaptive estimates of lower-order moments.

    Adam updates:

    .. math::

        t & = t + 1

        moment\_1\_out & = {\\beta}_1 * moment\_1 + (1 - {\\beta}_1) * grad

        moment\_2\_out & = {\\beta}_2 * moment\_2 + (1 - {\\beta}_2) * grad * grad

        learning\_rate & = learning\_rate * \\
                          \\frac{\sqrt{1 - {\\beta}_2^t}}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_1}{\sqrt{moment\_2} + \epsilon}

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        beta1 (float): The exponential decay rate for the 1st moment estimates.
        beta2 (float): The exponential decay rate for the 2nd moment estimates.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
592 593 594
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
595 596 597 598 599 600 601

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adam(learning_rate=0.2)
            optimizer.minimize(cost)

602 603 604
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
Q
qiaolongfei 已提交
605 606
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"
607 608 609 610 611

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
612
                 epsilon=1e-8,
X
Xin Pan 已提交
613 614
                 regularization=None,
                 name=None):
615 616 617 618
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
619
        super(AdamOptimizer, self).__init__(
X
Xin Pan 已提交
620 621 622
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
623 624 625 626 627 628 629 630 631 632
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
633 634
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
Q
qiaolongfei 已提交
635 636 637 638 639 640 641 642 643 644 645 646
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                dtype='float32',
                fill_value=self._beta1,
                shape=[1])
            self._add_accumulator(
                name=self._beta2_pow_acc_str,
                param=p,
                dtype='float32',
                fill_value=self._beta2,
                shape=[1])
647 648 649 650 651 652 653 654

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
Q
qiaolongfei 已提交
655 656 657 658 659
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
        beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                              param_and_grad[0])

660
        # create the adam optimize op
661 662 663 664 665
        adam_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
666
                "LearningRate": self._create_param_lr(param_and_grad),
667 668
                "Moment1": moment1,
                "Moment2": moment2,
Q
qiaolongfei 已提交
669 670
                "Beta1Pow": beta1_pow_acc,
                "Beta2Pow": beta2_pow_acc
671 672 673 674 675 676 677 678 679 680 681 682 683 684
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adam_op

685
    def _finish_update(self, block, param_and_grads):
686 687 688
        """Update Beta1 and Beta2 Power accumulators
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
689
        main_block = block.program.global_block()
690 691 692
        for param, grad in param_and_grads:
            if grad is None:
                continue
X
Xin Pan 已提交
693 694
            with param.block.program._optimized_guard(
                [param, grad]), name_scope("optimizer"):
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
                beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                      param)
                beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                                      param)
                main_block.append_op(
                    type="scale",
                    inputs={"X": beta1_pow_acc},
                    outputs={"Out": beta1_pow_acc},
                    attrs={"scale": self._beta1})

                main_block.append_op(
                    type="scale",
                    inputs={"X": beta2_pow_acc},
                    outputs={"Out": beta2_pow_acc},
                    attrs={"scale": self._beta2})
710 711 712


class AdamaxOptimizer(Optimizer):
Q
qiaolongfei 已提交
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
    """
    We implement the Adamax optimizer from Section 7 of the Adam
    paper: https://arxiv.org/abs/1412.6980. Adamax is a variant of the
    Adam algorithm based on the infinity norm.

    Adamax updates:

    .. math::

        t & = t + 1

        moment\_out & = {\\beta}_1 * moment + (1 - {\\beta}_1) * grad

        inf\_norm\_out & = max({\\beta}_2 * inf\_norm + \epsilon, |grad|)

        learning\_rate & = \\frac{learning\_rate}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_out}{inf\_norm\_out}


    The original paper does not have an epsilon attribute.
    However, it is added here for numerical stability to prevent the
    division by 0 error.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        beta1 (float): The exponential decay rate for the 1st moment estimates.
        beta2 (float): The exponential decay rate for the 2nd moment estimates.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
743 744 745
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
746 747 748 749 750 751

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adamax(learning_rate=0.2)
            optimizer.minimize(cost)
C
chengduo 已提交
752 753 754

    Notes:
       Currently, AdamaxOptimizer doesn't support sparse parameter optimization.
755 756 757
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"
Q
qiaolongfei 已提交
758
    _beta1_pow_acc_str = "beta1_pow_acc"
759 760 761 762 763

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
764
                 epsilon=1e-8,
X
Xin Pan 已提交
765 766
                 regularization=None,
                 name=None):
767 768 769 770
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
771
        super(AdamaxOptimizer, self).__init__(
X
Xin Pan 已提交
772 773 774
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
775 776 777 778 779 780 781 782
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
783 784
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
Q
qiaolongfei 已提交
785 786 787 788 789 790
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                dtype='float32',
                fill_value=self._beta1,
                shape=[1])
791 792 793 794 795 796 797

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
Q
qiaolongfei 已提交
798 799
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
800 801 802 803 804 805
        # create the adamax optimize op
        adamax_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
806
                "LearningRate": self._create_param_lr(param_and_grad),
807 808
                "Moment": moment,
                "InfNorm": inf_norm,
Q
qiaolongfei 已提交
809
                "Beta1Pow": beta1_pow_acc
810 811 812 813 814 815 816 817 818 819 820 821 822 823
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adamax_op

824
    def _finish_update(self, block, parameters_and_grads):
825 826 827
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
828
        main_block = block.program.global_block()
829 830 831
        for param, grad in parameters_and_grads:
            if grad is None:
                continue
X
Xin Pan 已提交
832 833
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('adamx'):
834 835 836 837 838 839 840
                beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                      param)
                main_block.append_op(
                    type="scale",
                    inputs={"X": beta1_pow_acc},
                    outputs={"Out": beta1_pow_acc},
                    attrs={"scale": self._beta1})
841 842 843


class DecayedAdagradOptimizer(Optimizer):
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
    """
    **Decayed Adagrad Optimizer**

    The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)

    The update is done as follows:

    .. math::

        moment\_out & = decay * moment + (1 - decay) * grad * grad

        param\_out & = param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

    The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
    does not have an epsilon attribute. It is added here for numerical
    stability to avoid the division by zero error.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        decay (float): decay rate.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
866 867 868
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
869 870 871 872 873 874

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.DecayedAdagrad(learning_rate=0.2)
            optimizer.minimize(cost)
C
chengduo 已提交
875 876 877

    Notes:
       Currently, DecayedAdagradOptimizer doesn't support sparse parameter optimization.
878 879 880
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
881 882 883 884 885 886
    def __init__(self,
                 learning_rate,
                 decay=0.95,
                 epsilon=1.0e-6,
                 regularization=None,
                 name=None):
887 888 889 890
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

Q
Qiao Longfei 已提交
891
        super(DecayedAdagradOptimizer, self).__init__(
X
Xin Pan 已提交
892 893 894
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

        # Create the decayed adagrad optimizer op
        decayed_adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return decayed_adagrad_op
925 926


927
class AdadeltaOptimizer(Optimizer):
928 929
    """
    **Adadelta Optimizer**
Q
qiaolongfei 已提交
930

931
    Simple Adadelta optimizer with average squared grad state and
932
    average squared update state.
933 934 935 936 937 938 939 940 941 942 943 944
    The details of adadelta please refer to this
    `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD
    <http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf>`_.

    ..  math::

        E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2 \\\\
        learning\\_rate &= sqrt( ( E(dx_{t-1}^2) + \\epsilon ) / ( \\
                          E(g_t^2) + \\epsilon ) ) \\\\
        E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\\_rate)^2

    Args:
Q
qiaolongfei 已提交
945
        learning_rate(float): global learning rate
946 947
        rho(float): rho in equation
        epsilon(float): epsilon in equation
X
Xin Pan 已提交
948 949 950
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
951 952 953 954 955 956 957

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adadelta(
                learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
            _, params_grads = optimizer.minimize(cost)
C
chengduo 已提交
958 959 960

    Notes:
       Currently, AdadeltaOptimizer doesn't support sparse parameter optimization.
961
    """
962

963 964 965
    _avg_squared_grad_acc_str = "_avg_squared_grad"
    _avg_squared_update_acc_str = "_avg_squared_update"

X
Xin Pan 已提交
966 967 968 969 970 971
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
                 rho=0.95,
                 regularization=None,
                 name=None):
972 973 974 975 976 977
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
978
        super(AdadeltaOptimizer, self).__init__(
X
Xin Pan 已提交
979 980 981
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
982 983 984 985 986
        self.type = "adadelta"
        self._epsilon = epsilon
        self._rho = rho

    def _create_accumulators(self, block, parameters):
987 988
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
989 990 991 992 993 994

        for p in parameters:
            self._add_accumulator(self._avg_squared_grad_acc_str, p)
            self._add_accumulator(self._avg_squared_update_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
995 996
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022

        avg_squared_grad_acc = self._get_accumulator(
            self._avg_squared_grad_acc_str, param_and_grad[0])
        avg_squared_update_acc = self._get_accumulator(
            self._avg_squared_update_acc_str, param_and_grad[0])

        # Create the adadelta optimizer op
        adadelta_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "AvgSquaredGrad": avg_squared_grad_acc,
                "AvgSquaredUpdate": avg_squared_update_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "AvgSquaredGradOut": avg_squared_grad_acc,
                "AvgSquaredUpdateOut": avg_squared_update_acc
            },
            attrs={"epsilon": self._epsilon,
                   "rho": self._rho})

        return adadelta_op


Q
qingqing01 已提交
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
class RMSPropOptimizer(Optimizer):
    """
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning
    rate method. The original slides proposed RMSProp: Slide 29 of
    http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf .

    The original equation is as follows:

    ..  math::

Q
qiaolongfei 已提交
1033
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
1034 1035 1036 1037

        w & = w - \\frac{\\eta} {\\sqrt{r(w,t) + \\epsilon}} \\nabla Q_{i}(w)

    The first equation calculates moving average of the squared gradient for
Q
qiaolongfei 已提交
1038
    each weight. Then dividing the gradient by :math:`sqrt{v(w,t)}`.
Q
qingqing01 已提交
1039 1040 1041 1042 1043 1044

    In some cases, adding a momentum term :math: `\\beta` is beneficial.
    In our implementation, Nesterov momentum is used:

    ..  math::

Q
qiaolongfei 已提交
1045
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
1046

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) +
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

    if centered is True:

    ..  math::

        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2

        g(w, t) & = \\rho g(w, t-1) + (1 - \\rho)\\nabla Q_{i}(w)

        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) - (g(w, t))^2 +
Q
qingqing01 已提交
1061 1062 1063 1064
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

Q
qiaolongfei 已提交
1065
    where, :math:`\\rho` is a hyperparameter and typical values are 0.9, 0.95
Q
qingqing01 已提交
1066 1067 1068 1069 1070 1071
    and so on. :math: `beta` is the momentum term. :math: `\\epsilon` is a
    smoothing term to avoid division by zero, usually set somewhere in range
    from 1e-4 to 1e-8.


    Args:
Q
qiaolongfei 已提交
1072
        learning_rate(float): global learning rate.
Q
qingqing01 已提交
1073 1074 1075
        rho(float): rho is :math: `\\rho` in equation, set 0.95 by default.
        epsilon(float): :math: `\\epsilon` in equation is smoothing term to
            avoid division by zero, set 1e-6 by default.
Q
qiaolongfei 已提交
1076
        momentum(float): :math:`\\beta` in equation is the momentum term,
Q
qingqing01 已提交
1077
            set 0.0 by default.
1078 1079 1080 1081
        centered(bool): If True, gradients are normalized by the estimated variance of
            the gradient; if False, by the uncentered second moment. Setting this to
            True may help with training, but is slightly more expensive in terms of
            computation and memory. Defaults to False.
X
Xin Pan 已提交
1082 1083 1084
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qingqing01 已提交
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

              optimizer = fluid.optimizer.RMSProp(0.0001)
              _, params_grads = optimizer.minimize(cost)
    """

    _momentum_acc_str = "momentum"
    _mean_square_acc_str = "mean_square"
1098
    _mean_grad_acc_str = "mean_grad"
Q
qingqing01 已提交
1099 1100 1101 1102 1103 1104

    def __init__(self,
                 learning_rate,
                 rho=0.95,
                 epsilon=1.0e-6,
                 momentum=0.0,
1105
                 centered=False,
X
Xin Pan 已提交
1106 1107
                 regularization=None,
                 name=None):
Q
qingqing01 已提交
1108
        super(RMSPropOptimizer, self).__init__(
X
Xin Pan 已提交
1109 1110 1111
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
Q
qingqing01 已提交
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if momentum is None:
            raise ValueError("momentum is not set.")

        self.type = "rmsprop"
        self._rho = rho
        self._epsilon = epsilon
        self._momentum = momentum
1125
        self._centered = centered
Q
qingqing01 已提交
1126 1127 1128 1129 1130 1131 1132 1133

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._momentum_acc_str, p)
            self._add_accumulator(self._mean_square_acc_str, p)
1134
            self._add_accumulator(self._mean_grad_acc_str, p)
Q
qingqing01 已提交
1135 1136 1137 1138 1139 1140 1141 1142 1143

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        momentum_acc = self._get_accumulator(self._momentum_acc_str,
                                             param_and_grad[0])
        mean_square_acc = self._get_accumulator(self._mean_square_acc_str,
                                                param_and_grad[0])
1144 1145
        mean_grad_acc = self._get_accumulator(self._mean_grad_acc_str,
                                              param_and_grad[0])
Q
qingqing01 已提交
1146 1147 1148 1149 1150 1151 1152
        rmsprop_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": momentum_acc,
                "MeanSquare": mean_square_acc,
1153
                "MeanGrad": mean_grad_acc,
Q
qingqing01 已提交
1154 1155 1156 1157 1158
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": momentum_acc,
1159 1160
                "MeanSquareOut": mean_square_acc,
                "MeanGradOut": mean_grad_acc
Q
qingqing01 已提交
1161 1162 1163 1164
            },
            attrs={
                "epsilon": self._epsilon,
                "decay": self._rho,
1165 1166
                "momentum": self._momentum,
                "centered": self._centered
Q
qingqing01 已提交
1167 1168 1169 1170 1171
            })

        return rmsprop_op


Q
qiaolongfei 已提交
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
class FtrlOptimizer(Optimizer):
    """
    FTRL (Follow The Regularized Leader) Optimizer.

    The paper that proposed Follow The Regularized Leader (FTRL):
    (https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf)

    ..  math::

        &new\_accum = squared\_accum + grad^2

        &if (lr\_power == -0.5):

        &\quad  linear\_accum += grad - \\frac{\\sqrt{new\_accum} - \\sqrt{squared\_accum}}{learning\_rate * param}

        &else:

        &\quad   linear\_accum += grad - \\frac{new\_accum^{-lr\_power} - accum^{-lr\_power}}{learning\_rate * param}


        &x = l1 * sign(linear\_accum) - linear\_accum

        &if (lr\_power == -0.5):

        &\quad   y = \\frac{\\sqrt{new\_accum}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &else:

        &\quad   y = \\frac{new\_accum^{-lr\_power}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &squared\_accum += grad^2

    Args:
        learning_rate (float|Variable): global learning rate.
        l1 (float):
        l2 (float):
        lr_power (float):
X
Xin Pan 已提交
1217 1218 1219
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
1220 1221 1222 1223 1224 1225 1226 1227 1228

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

              optimizer = fluid.optimizer.Ftrl(0.0001)
              _, params_grads = optimizer.minimize(cost)
C
chengduo 已提交
1229 1230 1231

    Notes:
       Currently, FtrlOptimizer doesn't support sparse parameter optimization.
Q
qiaolongfei 已提交
1232 1233 1234 1235 1236
    """

    _squared_acc_str = "squared"
    _linear_acc_str = "linear"

X
Xin Pan 已提交
1237 1238 1239 1240 1241 1242 1243
    def __init__(self,
                 learning_rate,
                 l1=0.0,
                 l2=0.0,
                 lr_power=-0.5,
                 regularization=None,
                 name=None):
Q
qiaolongfei 已提交
1244
        super(FtrlOptimizer, self).__init__(
X
Xin Pan 已提交
1245 1246 1247
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
Q
qiaolongfei 已提交
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")

        self.type = "ftrl"
        self._l1 = l1
        self._l2 = l2
        self._lr_power = lr_power

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._squared_acc_str, p)
            self._add_accumulator(self._linear_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        squared_acc = self._get_accumulator(self._squared_acc_str,
                                            param_and_grad[0])
        linear_acc = self._get_accumulator(self._linear_acc_str,
                                           param_and_grad[0])
        ftrl_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "SquaredAccumulator": squared_acc,
                "LinearAccumulator": linear_acc,
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "SquaredAccumOut": squared_acc,
                "LinearAccumOut": linear_acc
            },
            attrs={"l1": self._l1,
                   "l2": self._l1,
                   "lr_power": self._lr_power})

        return ftrl_op


1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
DecayedAdagrad = DecayedAdagradOptimizer
1307
Adadelta = AdadeltaOptimizer
Q
qingqing01 已提交
1308
RMSProp = RMSPropOptimizer
Q
qiaolongfei 已提交
1309
Ftrl = FtrlOptimizer
1310
LarsMomentum = LarsMomentumOptimizer
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325


class ModelAverage(Optimizer):
    """Accumulate the average of parameters whtin sliding window. The average
    result will be saved in temporary variables which can be applied to
    parameter variables of current model by calling 'apply()' method. And the
    'restore()' method is used to restored the parameter values of current model.

    The size of average window is determined by average_window_rate,
    min_average_window, max_average_window and current update times.

    Args:
        average_window_rate: The rate of average window.
        min_average_window: The minimum size of average window.
        max_average_window: The maximum size of average window.
X
Xin Pan 已提交
1326 1327 1328
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
1329
    Examples:
Q
qiaolongfei 已提交
1330 1331 1332

      .. code-block:: python

1333
        optimizer = fluid.optimizer.Momentum()
1334 1335
        optimizer.minimize(cost)
        model_average = fluid.optimizer.ModelAverage(0.15,
1336 1337 1338 1339 1340
                                                min_average_window=10000,
                                                max_average_window=20000)
        for pass_id in range(args.pass_num):
            for data in train_reader():
                exe.run(fluid.default_main_program()...)
1341 1342 1343 1344

            with model_average.apply(exe):
                for data in test_reader():
                    exe.run(inference_program...)
1345 1346 1347
    """

    def __init__(self,
W
wanghaoshuang 已提交
1348
                 average_window_rate,
1349 1350
                 min_average_window=10000,
                 max_average_window=10000,
X
Xin Pan 已提交
1351 1352 1353 1354
                 regularization=None,
                 name=None):
        super(ModelAverage, self).__init__(
            0.0, regularization=regularization, name=name)
1355 1356 1357
        self.average_window = average_window_rate
        self.min_average_window = min_average_window
        self.max_average_window = max_average_window
1358

1359
        self.params_grads = []
1360 1361
        for param in framework.default_main_program().global_block(
        ).all_parameters():
1362
            if param.do_model_average != False:
1363 1364 1365 1366
                grad = param.block.create_var(
                    name=unique_name.generate(".".join([param.name, 'tmp'])),
                    dtype=param.dtype,
                    persistable=False,
W
wanghaoshuang 已提交
1367
                    stop_gradient=True)
1368
                self.params_grads.append((param, grad))
1369

1370
        for param, grad in self.params_grads:
1371 1372
            if grad is None:
                continue
X
Xin Pan 已提交
1373 1374
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('move_average'):
1375
                self._append_average_accumulate_op(param)
1376

1377 1378 1379 1380
        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
            for param_grad in self.params_grads:
1381
                self._add_average_apply_op(block, param_grad)
1382 1383 1384 1385 1386

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
            for param_grad in self.params_grads:
1387
                self._add_average_restore_op(block, param_grad)
1388

1389
    def _add_average_apply_op(self, block, param_grad):
L
Luo Tao 已提交
1390 1391 1392 1393 1394 1395
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
        sum_1 = block._clone_variable(self._get_accumulator('sum_1', param))
        sum_2 = block._clone_variable(self._get_accumulator('sum_2', param))
        sum_3 = block._clone_variable(self._get_accumulator('sum_3', param))
        num_accumulates = block._clone_variable(
1396
            self._get_accumulator('num_accumulates', param))
L
Luo Tao 已提交
1397
        old_num_accumulates = block._clone_variable(
1398
            self._get_accumulator('old_num_accumulates', param))
L
Luo Tao 已提交
1399
        num_updates = block._clone_variable(
1400 1401 1402 1403 1404 1405
            self._get_accumulator('num_updates', param))
        # backup param value to grad
        layers.assign(input=param, output=grad)
        # param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
        tmp = layers.sum(x=[num_accumulates, old_num_accumulates])
        sum = layers.sum(x=[sum_1, sum_2, sum_3])
D
dzhwinter 已提交
1406 1407 1408 1409
        tmp = layers.cast(
            x=tmp, dtype='float32' if self._dtype == None else self._dtype)
        sum = layers.cast(
            x=sum, dtype='float32' if self._dtype == None else self._dtype)
S
sneaxiy 已提交
1410
        ops._elementwise_div(x=sum, y=tmp, out=param)
1411 1412

    def _add_average_restore_op(self, block, param_grad):
L
Luo Tao 已提交
1413 1414
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
        layers.assign(input=grad, output=param)

    def _append_average_accumulate_op(self, param):
        self.helper = LayerHelper("average_accumulate")
        sum_1 = self._add_accumulator('sum_1', param)
        sum_2 = self._add_accumulator('sum_2', param)
        sum_3 = self._add_accumulator('sum_3', param)
        num_accumulates = self._add_accumulator(
            'num_accumulates', param, dtype='int64', shape=[1])
        old_num_accumulates = self._add_accumulator(
            'old_num_accumulates', param, dtype='int64', shape=[1])
        num_updates = self._add_accumulator(
            'num_updates', param, dtype='int64', shape=[1])

        self.helper.append_op(
            type='average_accumulates',
            inputs={
                "param": param,
                "in_sum_1": sum_1,
                "in_sum_2": sum_2,
                "in_sum_3": sum_3,
                "in_num_accumulates": num_accumulates,
                "in_old_num_accumulates": old_num_accumulates,
                "in_num_updates": num_updates
            },
            outputs={
                "out_sum_1": sum_1,
                "out_sum_2": sum_2,
                "out_sum_3": sum_3,
                "out_num_accumulates": num_accumulates,
                "out_old_num_accumulates": old_num_accumulates,
                "out_num_updates": num_updates,
            },
            attrs={
                "average_window": self.average_window,
                "min_average_window": self.min_average_window,
                "max_average_window": self.max_average_window,
            })

1454 1455
    @contextmanager
    def apply(self, executor, need_restore=True):
1456 1457
        """Apply average values to parameters of current model.
        """
1458 1459 1460 1461 1462 1463
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)
1464 1465 1466 1467

    def restore(self, executor):
        """Restore parameter values of current model.
        """
1468
        executor.run(self.restore_program)