ExpandConvLayer.cpp 5.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yu Yang 已提交
15
#include "ExpandConvLayer.h"
Z
zhangjinchao01 已提交
16 17 18 19 20
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"

namespace paddle {

21 22 23 24
/*
 * The calculation of the exconvt(convolution transpose (deconv) operation)
 * is a swap of forward and backward of the calculation of exconv.
 * */
Z
zhangjinchao01 已提交
25
REGISTER_LAYER(exconv, ExpandConvLayer);
26
REGISTER_LAYER(exconvt, ExpandConvLayer);
Z
zhangjinchao01 已提交
27 28 29 30

bool ExpandConvLayer::init(const LayerMap &layerMap,
                           const ParameterMap &parameterMap) {
  /* Initialize the basic convolutional parent class */
31
  ExpandConvBaseLayer::init(layerMap, parameterMap);
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

  size_t numInputs = config_.inputs_size();
  inputShape_.resize(numInputs);
  filterShape_.resize(numInputs);
  outputShape_.resize(numInputs);
  for (int i = 0; i < config_.inputs_size(); i++) {
    std::vector<size_t> paddings = {(size_t)paddingY_[i], (size_t)padding_[i]};
    std::vector<size_t> strides = {(size_t)strideY_[i], (size_t)stride_[i]};
    createFunction(forward_,
                   !isDeconv_ ? "GemmConv" : "GemmConvGradInput",
                   FuncConfig()
                       .set("paddings", paddings)
                       .set("strides", strides)
                       .set("groups", (size_t)groups_[i]));

    createFunction(backward_,
                   !isDeconv_ ? "GemmConvGradInput" : "GemmConv",
                   FuncConfig()
                       .set("paddings", paddings)
                       .set("strides", strides)
                       .set("groups", (size_t)groups_[i]));

    createFunction(backward_,
                   "GemmConvGradFilter",
                   FuncConfig()
                       .set("paddings", paddings)
                       .set("strides", strides)
                       .set("groups", (size_t)groups_[i]));
  }
Z
zhangjinchao01 已提交
61 62 63
  return true;
}

64 65 66 67 68 69
// i is the index of input layers
#define BACKWARD_INPUT(i, inputs, outputs) \
  backward_[2 * i]->calc(inputs, outputs)
#define BACKWARD_FILTER(i, inputs, outputs) \
  backward_[2 * i + 1]->calc(inputs, outputs)

Z
zhangjinchao01 已提交
70 71 72
void ExpandConvLayer::forward(PassType passType) {
  Layer::forward(passType);

73
  size_t batchSize = inputLayers_[0]->getOutputValue()->getHeight();
74
  resetOutput(batchSize, getOutputSize());
Z
zhangjinchao01 已提交
75

76
  // Calculate the shape of the input, output, and filter.
77
  for (size_t i = 0; i < inputLayers_.size(); ++i) {
78 79 80 81 82
    inputShape_[i] = TensorShape({(size_t)batchSize,
                                  (size_t)channels_[i],
                                  (size_t)imgSizeH_[i],
                                  (size_t)imgSizeW_[i]});
    filterShape_[i] =
H
hedaoyuan 已提交
83 84 85 86 87
        TensorShape({(size_t)groups_[i],
                     !isDeconv_ ? (size_t)numFilters_ / groups_[i]
                                : (size_t)channels_[i] / groups_[i],
                     !isDeconv_ ? (size_t)channels_[i] / groups_[i]
                                : (size_t)numFilters_ / groups_[i],
88 89 90 91 92 93
                     (size_t)filterSizeY_[i],
                     (size_t)filterSize_[i]});
    outputShape_[i] = TensorShape({(size_t)batchSize,
                                   (size_t)numFilters_,
                                   (size_t)outputH_[i],
                                   (size_t)outputW_[i]});
Z
zhangjinchao01 已提交
94
  }
95 96 97 98 99 100 101

  // Calculate the output value.
  for (size_t i = 0; i < inputLayers_.size(); ++i) {
    BufferArgs inputs;
    BufferArgs outputs;
    inputs.addArg(*getInputValue(i), inputShape_[i]);
    inputs.addArg(*weights_[i]->getW(), filterShape_[i]);
H
hedaoyuan 已提交
102 103 104
    outputs.addArg(*getOutputValue(),
                   outputShape_[i],
                   !isDeconv_ && i == 0 ? ASSIGN_TO : ADD_TO);
105 106 107 108

    forward_[i]->calc(inputs, outputs);
  }

Z
zhangjinchao01 已提交
109
  /* add the bias-vector */
110
  if (biases_.get()) {
Z
zhangjinchao01 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
    if (sharedBiases_) {
      addSharedBias();
    } else {
      addUnsharedBias();
    }
  }

  /* activation */
  forwardActivation();
}

void ExpandConvLayer::backward(const UpdateCallback &callback) {
  backwardActivation();

  MatrixPtr outGrad = getOutputGrad();
  if (biases_ && biases_->getWGrad()) {
    bpropBiases(outGrad);
    /* Increasing the number of gradient */
    biases_->getParameterPtr()->incUpdate(callback);
  }

132
  // Calculate the input grad and filter grad.
133
  for (size_t i = 0; i < inputLayers_.size(); ++i) {
134 135 136 137 138 139 140
    if (getInputGrad(i)) {
      BufferArgs inputs;
      BufferArgs outputs;
      inputs.addArg(*getOutputGrad(), outputShape_[i]);
      inputs.addArg(*weights_[i]->getW(), filterShape_[i]);
      outputs.addArg(*getInputGrad(i), inputShape_[i], ADD_TO);
      BACKWARD_INPUT(i, inputs, outputs);
141
    }
142

Z
zhangjinchao01 已提交
143
    if (weights_[i]->getWGrad()) {
144 145 146 147 148 149 150 151 152 153 154 155
      BufferArgs inputs;
      BufferArgs outputs;
      if (!isDeconv_) {
        inputs.addArg(*getOutputGrad(), outputShape_[i]);
        inputs.addArg(*getInputValue(i), inputShape_[i]);
      } else {
        inputs.addArg(*getInputValue(i), inputShape_[i]);
        inputs.addArg(*getOutputGrad(), outputShape_[i]);
      }
      outputs.addArg(*weights_[i]->getWGrad(), filterShape_[i], ADD_TO);
      BACKWARD_FILTER(i, inputs, outputs);

Z
zhangjinchao01 已提交
156 157 158 159 160 161 162
      /* Increasing the number of gradient */
      weights_[i]->getParameterPtr()->incUpdate(callback);
    }
  }
}

}  // namespace paddle