ExpandConvLayer.cpp 2.5 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"
#include "ExpandConvLayer.h"

namespace paddle {

REGISTER_LAYER(exconv, ExpandConvLayer);

bool ExpandConvLayer::init(const LayerMap &layerMap,
                           const ParameterMap &parameterMap) {
  /* Initialize the basic convolutional parent class */
26
  ExpandConvBaseLayer::init(layerMap, parameterMap);
Z
zhangjinchao01 已提交
27 28 29 30 31 32 33
  return true;
}

void ExpandConvLayer::forward(PassType passType) {
  Layer::forward(passType);

  /* malloc memory for the output_ if necessary */
34
  int batchSize = inputLayers_[0]->getOutputValue()->getHeight();
35
  resetOutput(batchSize, getOutputSize());
Z
zhangjinchao01 已提交
36 37

  MatrixPtr image = nullptr;
38 39
  MatrixPtr outV = getOutputValue();
  for (size_t i = 0; i < inputLayers_.size(); ++i) {
Z
zhangjinchao01 已提交
40 41 42 43
    LayerPtr prevLayer = getPrev(i);
    image = prevLayer->getOutputValue();
    for (size_t off = 0; off < image->getHeight(); off++) {
      REGISTER_TIMER_INFO("expandFwdOnce", getName().c_str());
44
      expandFwdOnce(image, outV, i, off);
Z
zhangjinchao01 已提交
45 46 47
    }
  }
  /* add the bias-vector */
48
  if (biases_.get()) {
Z
zhangjinchao01 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
    if (sharedBiases_) {
      addSharedBias();
    } else {
      addUnsharedBias();
    }
  }

  /* activation */
  forwardActivation();
}

void ExpandConvLayer::backward(const UpdateCallback &callback) {
  backwardActivation();

  MatrixPtr outGrad = getOutputGrad();
  if (biases_ && biases_->getWGrad()) {
    bpropBiases(outGrad);
    /* Increasing the number of gradient */
    biases_->getParameterPtr()->incUpdate(callback);
  }

70
  for (size_t i = 0; i < inputLayers_.size(); ++i) {
Z
zhangjinchao01 已提交
71
    /* First, calculate the input layers error */
72
    if (getPrev(i)->getOutputGrad()) {
73 74
      bpropActs(outGrad, getPrev(i)->getOutputGrad(), i);
    }
Z
zhangjinchao01 已提交
75 76
    if (weights_[i]->getWGrad()) {
      /* Then, calculate the W-gradient for the current layer */
77
      bpropWeights(getPrev(i)->getOutputValue(), outGrad, i);
Z
zhangjinchao01 已提交
78 79 80 81 82 83 84
      /* Increasing the number of gradient */
      weights_[i]->getParameterPtr()->incUpdate(callback);
    }
  }
}

}  // namespace paddle