blas.cc 5.7 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. */
T
tensor-tang 已提交
14 15

#include "paddle/fluid/operators/jit/gen/blas.h"
16
#include <memory>
T
tensor-tang 已提交
17
#include "paddle/fluid/operators/jit/registry.h"
T
tensor-tang 已提交
18
#include "paddle/fluid/platform/cpu_info.h"
T
tensor-tang 已提交
19 20 21

namespace paddle {
namespace operators {
T
tensor-tang 已提交
22 23
namespace jit {
namespace gen {
T
tensor-tang 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

void VXXJitCode::genCode() {
  // do not need push stack, and do not need save avx512reg if do not use avx512
  int offset = 0;
  if (with_relu_) {
    vxorps(ymm_zero, ymm_zero, ymm_zero);
  }
  if (scalar_index_ == 1) {
    vbroadcastss(ymm_src1, ptr[param1]);
  } else if (scalar_index_ == 2) {
    vbroadcastss(ymm_src2, ptr[param2]);
  }
  for (int i = 0; i < num_ / YMM_FLOAT_BLOCK; ++i) {
    if (scalar_index_ != 1) {
      vmovups(ymm_src1, ptr[param1 + offset]);
    }
    if (scalar_index_ != 2) {
      vmovups(ymm_src2, ptr[param2 + offset]);
    }
43
    if (type_ == operand_type::MUL) {
T
tensor-tang 已提交
44
      vmulps(ymm_dst, ymm_src1, ymm_src2);
45
    } else if (type_ == operand_type::ADD) {
T
tensor-tang 已提交
46
      vaddps(ymm_dst, ymm_src1, ymm_src2);
T
tensor-tang 已提交
47 48
    } else if (type_ == operand_type::SUB) {
      vsubps(ymm_dst, ymm_src1, ymm_src2);
T
tensor-tang 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
    }
    if (with_relu_) {
      vmaxps(ymm_dst, ymm_zero, ymm_dst);
    }
    vmovups(ptr[param3 + offset], ymm_dst);
    offset += sizeof(float) * YMM_FLOAT_BLOCK;
  }
  int rest = num_ % YMM_FLOAT_BLOCK;
  while (rest > 0) {
    int block = XMM_FLOAT_BLOCK;
    if (rest >= 4) {
      block = 4;
      if (scalar_index_ != 1) {
        vmovups(xmm_src1, ptr[param1 + offset]);
      }
      if (scalar_index_ != 2) {
        vmovups(xmm_src2, ptr[param2 + offset]);
      }
    } else if (rest >= 2) {
      block = 2;
      if (scalar_index_ != 1) {
        vmovq(xmm_src1, ptr[param1 + offset]);
      }
      if (scalar_index_ != 2) {
        vmovq(xmm_src2, ptr[param2 + offset]);
      }
    } else {
      block = 1;
      if (scalar_index_ != 1) {
        vmovss(xmm_src1, ptr[param1 + offset]);
      }
      if (scalar_index_ != 2) {
        vmovss(xmm_src2, ptr[param2 + offset]);
      }
    }
    switch (type_) {
85
      case operand_type::MUL:
T
tensor-tang 已提交
86 87
        vmulps(xmm_dst, xmm_src1, xmm_src2);
        break;
88
      case operand_type::ADD:
T
tensor-tang 已提交
89 90
        vaddps(xmm_dst, xmm_src1, xmm_src2);
        break;
T
tensor-tang 已提交
91 92 93
      case operand_type::SUB:
        vsubps(xmm_dst, xmm_src1, xmm_src2);
        break;
T
tensor-tang 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
      default:
        break;
    }
    if (with_relu_) {
      vmaxps(xmm_dst, xmm_zero, xmm_dst);
    }
    if (rest >= 4) {
      vmovups(ptr[param3 + offset], xmm_dst);
    } else if (rest >= 2) {
      vmovq(ptr[param3 + offset], xmm_dst);
    } else {
      vmovss(ptr[param3 + offset], xmm_dst);
    }
    offset += sizeof(float) * block;
    rest -= block;
  }
  ret();
}

T
tensor-tang 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
void NCHW16CMulNCJitCode::genCode() {
  // RDI is ptr x_input
  // RSI is ptr y_input
  // RDX is ptr output
  // RCX is height
  // r8 is width

  push(rbx);

  xor_(rax, rax);
  xor_(r10, r10);
  vmovups(zmm3, ptr[rsi]);

  L("h_loop");
  xor_(rbx, rbx);
  L("w_loop");
  vmovups(zmm2, ptr[rdi + rax]);
  vmulps(zmm1, zmm2, zmm3);
  vmovups(ptr[rdx + rax], zmm1);
  add(rax, 64);
  inc(rbx);
  cmp(r8, rbx);
  jnz("w_loop");
  inc(r10);
  cmp(r10, rcx);
  jnz("h_loop");

  pop(rbx);
  ret();
}

class NCHW16CMulNCCreator : public JitCodeCreator<int> {
 public:
146
  bool CanBeUsed(const int& attr) const override {
T
tensor-tang 已提交
147 148 149 150 151 152 153 154
    return platform::MayIUse(platform::avx512f);
  }
  size_t CodeSize(const int& d) const override { return 256 * 1024; }
  std::unique_ptr<GenBase> CreateJitCode(const int& attr) const override {
    return make_unique<NCHW16CMulNCJitCode>(attr, CodeSize(attr));
  }
};

155 156 157
#define DECLARE_BLAS_CREATOR(name)                                           \
  class name##Creator : public JitCodeCreator<int> {                         \
   public:                                                                   \
158
    bool CanBeUsed(const int& attr) const override {                         \
T
tensor-tang 已提交
159
      return platform::MayIUse(platform::avx) && attr <= 1024;               \
160 161 162 163 164 165 166
    }                                                                        \
    size_t CodeSize(const int& d) const override {                           \
      return 96 + d / YMM_FLOAT_BLOCK * 4 * 8;                               \
    }                                                                        \
    std::unique_ptr<GenBase> CreateJitCode(const int& attr) const override { \
      return make_unique<name##JitCode>(attr, CodeSize(attr));               \
    }                                                                        \
T
tensor-tang 已提交
167
  }
168 169 170 171 172 173 174 175 176

DECLARE_BLAS_CREATOR(VMul);
DECLARE_BLAS_CREATOR(VAdd);
DECLARE_BLAS_CREATOR(VSub);
DECLARE_BLAS_CREATOR(VAddRelu);
DECLARE_BLAS_CREATOR(VScal);
DECLARE_BLAS_CREATOR(VAddBias);

#undef DECLARE_BLAS_CREATOR
T
tensor-tang 已提交
177

T
tensor-tang 已提交
178
}  // namespace gen
T
tensor-tang 已提交
179
}  // namespace jit
T
tensor-tang 已提交
180 181
}  // namespace operators
}  // namespace paddle
T
tensor-tang 已提交
182 183 184

namespace gen = paddle::operators::jit::gen;

T
tensor-tang 已提交
185 186
REGISTER_JITKERNEL_GEN(kVMul, gen::VMulCreator);
REGISTER_JITKERNEL_GEN(kVAdd, gen::VAddCreator);
T
tensor-tang 已提交
187
REGISTER_JITKERNEL_GEN(kVSub, gen::VSubCreator);
T
tensor-tang 已提交
188 189 190 191
REGISTER_JITKERNEL_GEN(kVAddRelu, gen::VAddReluCreator);
REGISTER_JITKERNEL_GEN(kVScal, gen::VScalCreator);
REGISTER_JITKERNEL_GEN(kVAddBias, gen::VAddBiasCreator);
REGISTER_JITKERNEL_GEN(kNCHW16CMulNC, gen::NCHW16CMulNCCreator);