Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
45bdd84d
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
45bdd84d
编写于
3月 10, 2019
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
enhance the jitkernel helper and add unit tests
test=develop
上级
14a764c9
变更
27
隐藏空白更改
内联
并排
Showing
27 changed file
with
328 addition
and
182 deletion
+328
-182
paddle/fluid/operators/jit/benchmark.cc
paddle/fluid/operators/jit/benchmark.cc
+3
-25
paddle/fluid/operators/jit/gen/act.cc
paddle/fluid/operators/jit/gen/act.cc
+7
-7
paddle/fluid/operators/jit/gen/blas.cc
paddle/fluid/operators/jit/gen/blas.cc
+2
-2
paddle/fluid/operators/jit/gen/embseqpool.cc
paddle/fluid/operators/jit/gen/embseqpool.cc
+1
-1
paddle/fluid/operators/jit/gen/gru.cc
paddle/fluid/operators/jit/gen/gru.cc
+1
-1
paddle/fluid/operators/jit/gen/hopv.cc
paddle/fluid/operators/jit/gen/hopv.cc
+1
-1
paddle/fluid/operators/jit/gen/jitcode.h
paddle/fluid/operators/jit/gen/jitcode.h
+1
-1
paddle/fluid/operators/jit/gen/lstm.cc
paddle/fluid/operators/jit/gen/lstm.cc
+1
-1
paddle/fluid/operators/jit/gen/matmul.cc
paddle/fluid/operators/jit/gen/matmul.cc
+1
-1
paddle/fluid/operators/jit/gen/seqpool.cc
paddle/fluid/operators/jit/gen/seqpool.cc
+1
-1
paddle/fluid/operators/jit/gen/sgd.cc
paddle/fluid/operators/jit/gen/sgd.cc
+1
-1
paddle/fluid/operators/jit/gen/vbroadcast.cc
paddle/fluid/operators/jit/gen/vbroadcast.cc
+1
-1
paddle/fluid/operators/jit/gen_base.cc
paddle/fluid/operators/jit/gen_base.cc
+1
-1
paddle/fluid/operators/jit/gen_base.h
paddle/fluid/operators/jit/gen_base.h
+4
-3
paddle/fluid/operators/jit/helper.h
paddle/fluid/operators/jit/helper.h
+82
-34
paddle/fluid/operators/jit/kernel_base.h
paddle/fluid/operators/jit/kernel_base.h
+4
-3
paddle/fluid/operators/jit/kernel_key.cc
paddle/fluid/operators/jit/kernel_key.cc
+3
-0
paddle/fluid/operators/jit/more/intrinsic/crf_decoding.cc
paddle/fluid/operators/jit/more/intrinsic/crf_decoding.cc
+1
-1
paddle/fluid/operators/jit/more/intrinsic/crf_decoding.h
paddle/fluid/operators/jit/more/intrinsic/crf_decoding.h
+2
-1
paddle/fluid/operators/jit/more/intrinsic/layer_norm.cc
paddle/fluid/operators/jit/more/intrinsic/layer_norm.cc
+1
-1
paddle/fluid/operators/jit/more/intrinsic/layer_norm.h
paddle/fluid/operators/jit/more/intrinsic/layer_norm.h
+2
-1
paddle/fluid/operators/jit/more/mix/mix.cc
paddle/fluid/operators/jit/more/mix/mix.cc
+8
-8
paddle/fluid/operators/jit/more/mix/mix.h
paddle/fluid/operators/jit/more/mix/mix.h
+6
-6
paddle/fluid/operators/jit/more/mkl/mkl.cc
paddle/fluid/operators/jit/more/mkl/mkl.cc
+24
-23
paddle/fluid/operators/jit/more/mkl/mkl.h
paddle/fluid/operators/jit/more/mkl/mkl.h
+7
-7
paddle/fluid/operators/jit/registry.h
paddle/fluid/operators/jit/registry.h
+2
-2
paddle/fluid/operators/jit/test.cc
paddle/fluid/operators/jit/test.cc
+160
-48
未找到文件。
paddle/fluid/operators/jit/benchmark.cc
浏览文件 @
45bdd84d
...
...
@@ -111,33 +111,11 @@ template <typename KernelTuple, typename PlaceType, typename... Args>
void
BenchAllImpls
(
const
typename
KernelTuple
::
attr_type
&
attr
,
Args
...
args
)
{
BenchFunc
<
KernelTuple
,
Args
...
>
benchmark
;
std
::
vector
<
std
::
pair
<
std
::
string
,
double
>>
infos
;
// test refer
auto
refer
=
jit
::
GetRefer
<
KernelTuple
>
();
if
(
!
refer
)
{
LOG
(
FATAL
)
<<
"Refer can not be empty!"
;
auto
funcs
=
jit
::
GetAllCandidateFuncsWithTypes
<
KernelTuple
,
PlaceType
>
(
attr
);
for
(
auto
f
:
funcs
)
{
infos
.
push_back
(
std
::
make_pair
(
f
.
first
,
benchmark
(
f
.
second
,
args
...)));
}
infos
.
push_back
(
std
::
make_pair
(
"Refer"
,
benchmark
(
refer
,
args
...)));
// test jitcode
auto
jitcode
=
jit
::
GetJitCode
<
KernelTuple
,
PlaceType
>
(
attr
);
if
(
jitcode
)
{
infos
.
push_back
(
std
::
make_pair
(
"JitCode"
,
benchmark
(
jitcode
,
args
...)));
}
// test all impls in more
jit
::
KernelKey
kkey
(
KernelTuple
::
kernel_type
,
PlaceType
());
auto
&
pool
=
jit
::
KernelPool
().
Instance
().
AllKernels
();
auto
iter
=
pool
.
find
(
kkey
);
if
(
iter
!=
pool
.
end
())
{
auto
&
impls
=
iter
->
second
;
for
(
auto
&
impl
:
impls
)
{
auto
i
=
dynamic_cast
<
const
jit
::
KernelMore
<
KernelTuple
>*>
(
impl
.
get
());
if
(
i
&&
i
->
UseMe
(
attr
))
{
auto
more
=
i
->
GetFunc
();
infos
.
push_back
(
std
::
make_pair
(
i
->
ImplType
(),
benchmark
(
more
,
args
...)));
}
}
}
// Test result from Get function
auto
tgt
=
jit
::
KernelFuncs
<
KernelTuple
,
PlaceType
>::
Cache
().
At
(
attr
);
if
(
!
tgt
)
{
...
...
paddle/fluid/operators/jit/gen/act.cc
浏览文件 @
45bdd84d
...
...
@@ -81,7 +81,7 @@ void VActJitCode::genCode() {
#define DECLARE_ACT_CREATOR(name) \
class name##Creator : public JitCodeCreator<int> { \
public: \
bool
UseMe(const int& attr) const override;
\
bool
CanBeUsed(const int& attr) const override;
\
size_t CodeSize(const int& d) const override; \
std::unique_ptr<GenBase> CreateJitCode(const int& attr) const override { \
return make_unique<name##JitCode>(attr, CodeSize(attr)); \
...
...
@@ -96,27 +96,27 @@ DECLARE_ACT_CREATOR(VSigmoid);
DECLARE_ACT_CREATOR
(
VTanh
);
// TODO(TJ): tuning use me
bool
VReluCreator
::
UseMe
(
const
int
&
d
)
const
{
bool
VReluCreator
::
CanBeUsed
(
const
int
&
d
)
const
{
return
platform
::
MayIUse
(
platform
::
avx
);
}
bool
VSquareCreator
::
UseMe
(
const
int
&
d
)
const
{
bool
VSquareCreator
::
CanBeUsed
(
const
int
&
d
)
const
{
return
platform
::
MayIUse
(
platform
::
avx
);
}
bool
VIdentityCreator
::
UseMe
(
const
int
&
d
)
const
{
bool
VIdentityCreator
::
CanBeUsed
(
const
int
&
d
)
const
{
return
platform
::
MayIUse
(
platform
::
avx
);
}
bool
VExpCreator
::
UseMe
(
const
int
&
d
)
const
{
bool
VExpCreator
::
CanBeUsed
(
const
int
&
d
)
const
{
return
platform
::
MayIUse
(
platform
::
avx
)
&&
d
<
32
;
}
bool
VSigmoidCreator
::
UseMe
(
const
int
&
d
)
const
{
bool
VSigmoidCreator
::
CanBeUsed
(
const
int
&
d
)
const
{
return
platform
::
MayIUse
(
platform
::
avx
);
}
bool
VTanhCreator
::
UseMe
(
const
int
&
d
)
const
{
bool
VTanhCreator
::
CanBeUsed
(
const
int
&
d
)
const
{
return
platform
::
MayIUse
(
platform
::
avx
);
}
...
...
paddle/fluid/operators/jit/gen/blas.cc
浏览文件 @
45bdd84d
...
...
@@ -142,7 +142,7 @@ void NCHW16CMulNCJitCode::genCode() {
class
NCHW16CMulNCCreator
:
public
JitCodeCreator
<
int
>
{
public:
bool
UseMe
(
const
int
&
attr
)
const
override
{
bool
CanBeUsed
(
const
int
&
attr
)
const
override
{
return
platform
::
MayIUse
(
platform
::
avx512f
);
}
size_t
CodeSize
(
const
int
&
d
)
const
override
{
return
256
*
1024
;
}
...
...
@@ -154,7 +154,7 @@ class NCHW16CMulNCCreator : public JitCodeCreator<int> {
#define DECLARE_BLAS_CREATOR(name) \
class name##Creator : public JitCodeCreator<int> { \
public: \
bool
UseMe(const int& attr) const override {
\
bool
CanBeUsed(const int& attr) const override {
\
return platform::MayIUse(platform::avx) && attr <= 1024; \
} \
size_t CodeSize(const int& d) const override { \
...
...
paddle/fluid/operators/jit/gen/embseqpool.cc
浏览文件 @
45bdd84d
...
...
@@ -121,7 +121,7 @@ void EmbSeqPoolJitCode::genCode() {
class
EmbSeqPoolCreator
:
public
JitCodeCreator
<
emb_seq_pool_attr_t
>
{
public:
bool
UseMe
(
const
emb_seq_pool_attr_t
&
attr
)
const
override
{
bool
CanBeUsed
(
const
emb_seq_pool_attr_t
&
attr
)
const
override
{
return
platform
::
MayIUse
(
platform
::
avx
)
&&
attr
.
table_width
%
YMM_FLOAT_BLOCK
==
0
;
}
...
...
paddle/fluid/operators/jit/gen/gru.cc
浏览文件 @
45bdd84d
...
...
@@ -86,7 +86,7 @@ void GRUJitCode::genCode() {
class name##Creator : public JitCodeCreator<gru_attr_t> { \
public: \
/* TODO(TJ): enable more */
\
bool
UseMe(const gru_attr_t& attr) const override {
\
bool
CanBeUsed(const gru_attr_t& attr) const override {
\
return platform::MayIUse(platform::avx) && attr.d % 8 == 0; \
} \
size_t CodeSize(const gru_attr_t& attr) const override { \
...
...
paddle/fluid/operators/jit/gen/hopv.cc
浏览文件 @
45bdd84d
...
...
@@ -76,7 +76,7 @@ void HOPVJitCode::genCode() {
#define DECLARE_HOP_CREATOR(name) \
class name##Creator : public JitCodeCreator<int> { \
public: \
bool
UseMe(const int& attr) const override {
\
bool
CanBeUsed(const int& attr) const override {
\
return platform::MayIUse(platform::avx); \
} \
size_t CodeSize(const int& d) const override { \
...
...
paddle/fluid/operators/jit/gen/jitcode.h
浏览文件 @
45bdd84d
...
...
@@ -73,7 +73,7 @@ class JitCode : public GenBase, public Xbyak::CodeGenerator {
virtual
void
genCode
()
=
0
;
size_t
getSize
()
const
override
{
return
CodeGenerator
::
getSize
();
}
const
unsigned
char
*
getCodeInternal
()
override
{
const
unsigned
char
*
getCodeInternal
()
const
override
{
const
Xbyak
::
uint8
*
code
=
CodeGenerator
::
getCode
();
return
code
;
}
...
...
paddle/fluid/operators/jit/gen/lstm.cc
浏览文件 @
45bdd84d
...
...
@@ -114,7 +114,7 @@ void LSTMJitCode::genCode() {
class name##Creator : public JitCodeCreator<lstm_attr_t> { \
public: \
/* TODO(TJ): enable more */
\
bool
UseMe(const lstm_attr_t& attr) const override {
\
bool
CanBeUsed(const lstm_attr_t& attr) const override {
\
return platform::MayIUse(platform::avx) && attr.d % 8 == 0; \
} \
size_t CodeSize(const lstm_attr_t& attr) const override { \
...
...
paddle/fluid/operators/jit/gen/matmul.cc
浏览文件 @
45bdd84d
...
...
@@ -98,7 +98,7 @@ void MatMulJitCode::genCode() {
class
MatMulCreator
:
public
JitCodeCreator
<
matmul_attr_t
>
{
public:
bool
UseMe
(
const
matmul_attr_t
&
attr
)
const
override
{
bool
CanBeUsed
(
const
matmul_attr_t
&
attr
)
const
override
{
return
attr
.
m
==
1
&&
platform
::
MayIUse
(
platform
::
avx512f
)
&&
attr
.
n
%
ZMM_FLOAT_BLOCK
==
0
&&
attr
.
k
<
512
;
}
...
...
paddle/fluid/operators/jit/gen/seqpool.cc
浏览文件 @
45bdd84d
...
...
@@ -57,7 +57,7 @@ void SeqPoolJitCode::genCode() {
class
SeqPoolCreator
:
public
JitCodeCreator
<
seq_pool_attr_t
>
{
public:
bool
UseMe
(
const
seq_pool_attr_t
&
attr
)
const
override
{
bool
CanBeUsed
(
const
seq_pool_attr_t
&
attr
)
const
override
{
return
platform
::
MayIUse
(
platform
::
avx
);
}
size_t
CodeSize
(
const
seq_pool_attr_t
&
attr
)
const
override
{
...
...
paddle/fluid/operators/jit/gen/sgd.cc
浏览文件 @
45bdd84d
...
...
@@ -104,7 +104,7 @@ void SgdJitCode::genCode() {
class
SgdCreator
:
public
JitCodeCreator
<
sgd_attr_t
>
{
public:
bool
UseMe
(
const
sgd_attr_t
&
attr
)
const
override
{
bool
CanBeUsed
(
const
sgd_attr_t
&
attr
)
const
override
{
return
platform
::
MayIUse
(
platform
::
avx
)
&&
attr
.
grad_width
%
YMM_FLOAT_BLOCK
==
0
;
}
...
...
paddle/fluid/operators/jit/gen/vbroadcast.cc
浏览文件 @
45bdd84d
...
...
@@ -69,7 +69,7 @@ void VBroadcastJitCode::genCode() {
class
VBroadcastCreator
:
public
JitCodeCreator
<
int64_t
>
{
public:
bool
UseMe
(
const
int64_t
&
w
)
const
override
{
bool
CanBeUsed
(
const
int64_t
&
w
)
const
override
{
return
platform
::
MayIUse
(
platform
::
avx
)
&&
w
%
YMM_FLOAT_BLOCK
==
0
;
}
size_t
CodeSize
(
const
int64_t
&
w
)
const
override
{
...
...
paddle/fluid/operators/jit/gen_base.cc
浏览文件 @
45bdd84d
...
...
@@ -31,7 +31,7 @@ namespace paddle {
namespace
operators
{
namespace
jit
{
// refer do not need
useme
, it would be the last one.
// refer do not need
CanBeUsed
, it would be the last one.
void
GenBase
::
dumpCode
(
const
unsigned
char
*
code
)
const
{
if
(
code
)
{
static
int
counter
=
0
;
...
...
paddle/fluid/operators/jit/gen_base.h
浏览文件 @
45bdd84d
...
...
@@ -31,9 +31,10 @@ class GenBase : public Kernel {
virtual
~
GenBase
()
=
default
;
virtual
std
::
string
name
()
const
=
0
;
virtual
size_t
getSize
()
const
=
0
;
virtual
const
unsigned
char
*
getCodeInternal
()
=
0
;
virtual
const
unsigned
char
*
getCodeInternal
()
const
=
0
;
const
char
*
ImplType
()
const
override
{
return
"JitCode"
;
}
template
<
typename
Func
>
Func
getCode
()
{
Func
getCode
()
const
{
const
unsigned
char
*
code
=
this
->
getCodeInternal
();
if
(
FLAGS_dump_jitcode
)
{
this
->
dumpCode
(
code
);
...
...
@@ -65,7 +66,7 @@ class JitCodeCreator : public GenCreator {
virtual
~
JitCodeCreator
()
=
default
;
// condition when this jit code can be used.
virtual
bool
UseMe
(
const
Attr
&
attr
)
const
=
0
;
virtual
bool
CanBeUsed
(
const
Attr
&
attr
)
const
=
0
;
// estimate this code size
virtual
size_t
CodeSize
(
const
Attr
&
attr
)
const
=
0
;
...
...
paddle/fluid/operators/jit/helper.h
浏览文件 @
45bdd84d
...
...
@@ -14,9 +14,6 @@
#pragma once
extern
"C"
{
#include <xxhash.h>
}
#include <iostream>
#include <string>
#include <unordered_map>
...
...
@@ -36,31 +33,30 @@ template <typename KernelTuple, typename PlaceType>
inline
typename
std
::
enable_if
<
std
::
is_same
<
typename
KernelTuple
::
data_type
,
float
>::
value
&&
std
::
is_same
<
PlaceType
,
platform
::
CPUPlace
>::
value
,
typename
KernelTuple
::
func_type
>::
type
const
Kernel
*
>::
type
GetJitCode
(
const
typename
KernelTuple
::
attr_type
&
attr
)
{
using
Func
=
typename
KernelTuple
::
func_type
;
using
Attr
=
typename
KernelTuple
::
attr_type
;
size_t
key
=
JitCodeKey
<
Attr
>
(
attr
);
auto
&
codes
=
JitCodePool
<
KernelTuple
::
kernel_type
>
().
Instance
();
auto
&
codes
=
JitCodePool
<
KernelTuple
::
kernel_type
>
::
Instance
();
if
(
codes
.
Has
(
key
))
{
return
codes
.
AllKernels
().
at
(
key
)
->
template
getCode
<
Func
>
();
return
codes
.
AllKernels
().
at
(
key
)
.
get
();
}
// creator is not related with attr, so can use KernelKey as key
KernelKey
kkey
(
KernelTuple
::
kernel_type
,
PlaceType
());
// pool: (KernelKey(type, place), vector<GenCreatorPtr>)
auto
&
creator_map
=
JitCodeCreatorPool
().
Instance
().
AllCreators
();
auto
&
creator_map
=
JitCodeCreatorPool
::
Instance
().
AllCreators
();
auto
iter
=
creator_map
.
find
(
kkey
);
if
(
iter
!=
creator_map
.
end
())
{
auto
&
creators
=
iter
->
second
;
for
(
auto
&
cur
:
creators
)
{
auto
i
=
dynamic_cast
<
const
JitCodeCreator
<
Attr
>*>
(
cur
.
get
());
if
(
i
&&
i
->
UseMe
(
attr
))
{
if
(
i
&&
i
->
CanBeUsed
(
attr
))
{
auto
p
=
i
->
CreateJitCode
(
attr
);
if
(
p
)
{
auto
f
=
p
->
template
getCode
<
Func
>
();
auto
res
=
p
.
get
();
codes
.
Insert
(
key
,
std
::
move
(
p
));
return
f
;
return
res
;
}
}
}
...
...
@@ -72,7 +68,7 @@ template <typename KernelTuple, typename PlaceType>
inline
typename
std
::
enable_if
<
!
std
::
is_same
<
typename
KernelTuple
::
data_type
,
float
>::
value
||
!
std
::
is_same
<
PlaceType
,
platform
::
CPUPlace
>::
value
,
typename
KernelTuple
::
func_type
>::
type
const
Kernel
*
>::
type
GetJitCode
(
const
typename
KernelTuple
::
attr_type
&
attr
)
{
return
nullptr
;
}
...
...
@@ -80,8 +76,8 @@ GetJitCode(const typename KernelTuple::attr_type& attr) {
// Refer code do not related with attr, which is just for cast
// Refer is always on CPUPlace
template
<
typename
KernelTuple
>
inline
typename
KernelTuple
::
func_type
GetRefer
()
{
auto
&
ref_pool
=
ReferKernelPool
().
Instance
().
AllKernels
();
inline
const
Kernel
*
GetReferKernel
()
{
auto
&
ref_pool
=
ReferKernelPool
::
Instance
().
AllKernels
();
KernelKey
kkey
(
KernelTuple
::
kernel_type
,
platform
::
CPUPlace
());
auto
ref_iter
=
ref_pool
.
find
(
kkey
);
PADDLE_ENFORCE
(
ref_iter
!=
ref_pool
.
end
(),
...
...
@@ -90,36 +86,93 @@ inline typename KernelTuple::func_type GetRefer() {
for
(
auto
&
impl
:
ref_impls
)
{
auto
i
=
dynamic_cast
<
const
ReferKernel
<
KernelTuple
>*>
(
impl
.
get
());
if
(
i
)
{
return
i
->
GetFunc
()
;
return
i
;
}
}
return
nullptr
;
}
template
<
typename
KernelTuple
,
typename
PlaceType
=
platform
::
CPUPlace
>
typename
KernelTuple
::
func_type
Get
(
template
<
typename
KernelTuple
>
inline
typename
KernelTuple
::
func_type
GetReferFunc
()
{
auto
ker
=
GetReferKernel
<
KernelTuple
>
();
auto
p
=
dynamic_cast
<
const
ReferKernel
<
KernelTuple
>*>
(
ker
);
PADDLE_ENFORCE
(
p
,
"The Refer kernel should exsit"
);
return
p
->
GetFunc
();
}
// Return all Kernels that can be used
template
<
typename
KernelTuple
,
typename
PlaceType
>
std
::
vector
<
const
Kernel
*>
GetAllCandidateKernels
(
const
typename
KernelTuple
::
attr_type
&
attr
)
{
auto
jitfunc
=
GetJitCode
<
KernelTuple
,
PlaceType
>
(
attr
);
if
(
jitfunc
)
{
return
jitfunc
;
// the search order shoudl be jitcode > more > refer
std
::
vector
<
const
Kernel
*>
res
;
auto
jitker
=
GetJitCode
<
KernelTuple
,
PlaceType
>
(
attr
);
if
(
jitker
)
{
res
.
emplace_back
(
jitker
);
}
// pool: (KernelKey(type, place), vector<KernelPtr>)
//
more kernel
pool: (KernelKey(type, place), vector<KernelPtr>)
KernelKey
kkey
(
KernelTuple
::
kernel_type
,
PlaceType
());
auto
&
pool
=
KernelPool
().
Instance
().
AllKernels
();
auto
&
pool
=
KernelPool
::
Instance
().
AllKernels
();
auto
iter
=
pool
.
find
(
kkey
);
if
(
iter
!=
pool
.
end
())
{
auto
&
impls
=
iter
->
second
;
for
(
auto
&
impl
:
impls
)
{
auto
i
=
dynamic_cast
<
const
KernelMore
<
KernelTuple
>*>
(
impl
.
get
());
if
(
i
&&
i
->
UseMe
(
attr
))
{
re
turn
i
->
GetFunc
(
);
if
(
i
&&
i
->
CanBeUsed
(
attr
))
{
re
s
.
emplace_back
(
i
);
}
}
}
// The last implementation should be reference function on CPUPlace.
return
GetRefer
<
KernelTuple
>
();
auto
ref
=
GetReferKernel
<
KernelTuple
>
();
PADDLE_ENFORCE
(
ref
!=
nullptr
,
"Refer Kernel can not be empty."
);
res
.
emplace_back
(
ref
);
return
res
;
}
template
<
typename
KernelTuple
,
typename
PlaceType
=
platform
::
CPUPlace
>
std
::
vector
<
std
::
pair
<
std
::
string
,
typename
KernelTuple
::
func_type
>>
GetAllCandidateFuncsWithTypes
(
const
typename
KernelTuple
::
attr_type
&
attr
)
{
using
Func
=
typename
KernelTuple
::
func_type
;
auto
kers
=
GetAllCandidateKernels
<
KernelTuple
,
PlaceType
>
(
attr
);
std
::
vector
<
std
::
pair
<
std
::
string
,
Func
>>
res
;
for
(
auto
k
:
kers
)
{
std
::
string
name
=
k
->
ImplType
();
if
(
name
==
"JitCode"
)
{
auto
i
=
dynamic_cast
<
const
GenBase
*>
(
k
);
PADDLE_ENFORCE
(
i
,
"jitcode kernel cast can not fail."
);
res
.
emplace_back
(
std
::
make_pair
(
name
,
i
->
template
getCode
<
Func
>()));
}
else
{
auto
i
=
dynamic_cast
<
const
KernelMore
<
KernelTuple
>*>
(
k
);
PADDLE_ENFORCE
(
i
,
"kernel cast can not fail."
);
res
.
emplace_back
(
std
::
make_pair
(
name
,
i
->
GetFunc
()));
}
}
return
res
;
}
template
<
typename
KernelTuple
,
typename
PlaceType
=
platform
::
CPUPlace
>
std
::
vector
<
typename
KernelTuple
::
func_type
>
GetAllCandidateFuncs
(
const
typename
KernelTuple
::
attr_type
&
attr
)
{
auto
funcs
=
GetAllCandidateFuncsWithTypes
<
KernelTuple
,
PlaceType
>
(
attr
);
std
::
vector
<
typename
KernelTuple
::
func_type
>
res
;
for
(
auto
&
i
:
funcs
)
{
res
.
emplace_back
(
i
.
second
);
}
return
res
;
}
template
<
typename
KernelTuple
,
typename
PlaceType
=
platform
::
CPUPlace
>
typename
KernelTuple
::
func_type
GetDefaultBestFunc
(
const
typename
KernelTuple
::
attr_type
&
attr
)
{
auto
funcs
=
GetAllCandidateFuncs
<
KernelTuple
,
PlaceType
>
(
attr
);
PADDLE_ENFORCE_GE
(
funcs
.
size
(),
1UL
);
// Here could do some runtime benchmark of this attr and return the best one.
// But yet just get the first one as the default best one,
// which is searched in order and tuned by offline.
return
funcs
[
0
];
}
template
<
typename
KernelTuple
,
typename
PlaceType
>
...
...
@@ -134,17 +187,13 @@ class KernelFuncs {
// the exposed interface to use
typename
KernelTuple
::
func_type
At
(
const
typename
KernelTuple
::
attr_type
&
attr
)
{
// XXH64: 13.8 GB/s
// TODO(TJ): change me, maybe not all attr change need one key, should be
// attrkey
int64_t
key
=
XXH64
(
&
attr
,
sizeof
(
typename
KernelTuple
::
attr_type
),
0
);
// Maybe here is not good enough, not all kernels should have jitcode
int64_t
key
=
JitCodeKey
<
typename
KernelTuple
::
attr_type
>
(
attr
);
if
(
Has
(
key
))
{
return
funcs_
.
at
(
key
);
}
// If do not have this attr in cache,
// then could run some runtime benchmark of this attr and save the best one.
// Here just get the offline benchmarked best one.
auto
func
=
Get
<
KernelTuple
,
PlaceType
>
(
attr
);
// If do not have this attr in cache then get the default best
auto
func
=
GetDefaultBestFunc
<
KernelTuple
,
PlaceType
>
(
attr
);
Insert
(
key
,
func
);
return
func
;
}
...
...
@@ -156,7 +205,6 @@ class KernelFuncs {
protected:
bool
Has
(
int64_t
key
)
const
{
return
funcs_
.
find
(
key
)
!=
funcs_
.
end
();
}
void
Insert
(
int64_t
key
,
typename
KernelTuple
::
func_type
func
)
{
funcs_
.
emplace
(
key
,
func
);
}
...
...
paddle/fluid/operators/jit/kernel_base.h
浏览文件 @
45bdd84d
...
...
@@ -302,6 +302,7 @@ class Kernel {
public:
Kernel
()
=
default
;
virtual
~
Kernel
()
=
default
;
virtual
const
char
*
ImplType
()
const
=
0
;
DISABLE_COPY_AND_ASSIGN
(
Kernel
);
};
...
...
@@ -312,8 +313,8 @@ class KernelMore : public Kernel {
using
Func
=
typename
KernelTuple
::
func_type
;
using
Attr
=
typename
KernelTuple
::
attr_type
;
virtual
Func
GetFunc
()
const
{
return
func
;
}
virtual
bool
UseMe
(
const
Attr
&
attr
)
const
=
0
;
virtual
const
char
*
ImplType
(
)
const
=
0
;
// specify this kernel can be used, means it should not fail if use it.
virtual
bool
CanBeUsed
(
const
Attr
&
attr
)
const
=
0
;
protected:
Func
func
{
nullptr
};
...
...
@@ -323,7 +324,7 @@ template <typename KernelTuple>
class
ReferKernel
:
public
KernelMore
<
KernelTuple
>
{
public:
// Refer code can always be used
bool
UseMe
(
const
typename
KernelTuple
::
attr_type
&
attr
)
const
override
{
bool
CanBeUsed
(
const
typename
KernelTuple
::
attr_type
&
attr
)
const
override
{
return
true
;
}
const
char
*
ImplType
()
const
override
{
return
"Refer"
;
}
...
...
paddle/fluid/operators/jit/kernel_key.cc
浏览文件 @
45bdd84d
...
...
@@ -13,6 +13,7 @@
* limitations under the License. */
#include "paddle/fluid/operators/jit/kernel_key.h"
#include <xxhash.h>
#include "paddle/fluid/platform/enforce.h"
namespace
paddle
{
...
...
@@ -49,6 +50,8 @@ static inline int act_type_convert(KernelType type) {
template
<
>
size_t
JitCodeKey
<
lstm_attr_t
>
(
const
lstm_attr_t
&
attr
)
{
// XXH64: 13.8 GB/s
size_t
key
=
attr
.
d
;
int
gate_key
=
act_type_convert
(
attr
.
act_gate
)
<<
1
;
int
cand_key
=
act_type_convert
(
attr
.
act_cand
)
<<
(
1
+
act_type_shift
);
...
...
paddle/fluid/operators/jit/more/intrinsic/crf_decoding.cc
浏览文件 @
45bdd84d
...
...
@@ -161,7 +161,7 @@ void CRFDecoding(const int seq_len, const float* x, const float* w,
}
}
bool
CRFDecodingKernel
::
UseMe
(
const
int
&
d
)
const
{
bool
CRFDecodingKernel
::
CanBeUsed
(
const
int
&
d
)
const
{
#ifdef __AVX512F__
constexpr
int
block
=
ZMM_FLOAT_BLOCK
;
#else
...
...
paddle/fluid/operators/jit/more/intrinsic/crf_decoding.h
浏览文件 @
45bdd84d
...
...
@@ -29,7 +29,8 @@ void CRFDecoding(const int seq_len, const float* x, const float* w,
class
CRFDecodingKernel
:
public
KernelMore
<
CRFDecodingTuple
<
float
>>
{
public:
CRFDecodingKernel
()
{
this
->
func
=
CRFDecoding
;
}
bool
UseMe
(
const
typename
CRFDecodingTuple
<
float
>::
attr_type
&
)
const
override
;
bool
CanBeUsed
(
const
typename
CRFDecodingTuple
<
float
>::
attr_type
&
)
const
override
;
const
char
*
ImplType
()
const
override
{
return
"Intrinsic"
;
}
};
...
...
paddle/fluid/operators/jit/more/intrinsic/layer_norm.cc
浏览文件 @
45bdd84d
...
...
@@ -153,7 +153,7 @@ void LayerNorm(float* x, float* out, float* mean, float* var,
}
}
bool
LayerNormKernel
::
UseMe
(
const
int
&
d
)
const
{
bool
LayerNormKernel
::
CanBeUsed
(
const
int
&
d
)
const
{
return
platform
::
MayIUse
(
platform
::
avx
)
&&
d
>=
YMM_FLOAT_BLOCK
;
}
...
...
paddle/fluid/operators/jit/more/intrinsic/layer_norm.h
浏览文件 @
45bdd84d
...
...
@@ -30,7 +30,8 @@ void LayerNorm(float* x, float* out, float* mean, float* var,
class
LayerNormKernel
:
public
KernelMore
<
LayerNormTuple
<
float
>>
{
public:
LayerNormKernel
()
{
this
->
func
=
LayerNorm
;
}
bool
UseMe
(
const
typename
LayerNormTuple
<
float
>::
attr_type
&
)
const
override
;
bool
CanBeUsed
(
const
typename
LayerNormTuple
<
float
>::
attr_type
&
)
const
override
;
const
char
*
ImplType
()
const
override
{
return
"Intrinsic"
;
}
};
...
...
paddle/fluid/operators/jit/more/mix/mix.cc
浏览文件 @
45bdd84d
...
...
@@ -204,21 +204,21 @@ void GRUHtPart2(gru_t* step, const gru_attr_t* attr) {
}
// TODO(TJ): tuning me
bool
VSigmoidKernel
::
UseMe
(
const
int
&
d
)
const
{
return
true
;
}
bool
VSigmoidKernel
::
CanBeUsed
(
const
int
&
d
)
const
{
return
true
;
}
bool
VTanhKernel
::
UseMe
(
const
int
&
d
)
const
{
return
true
;
}
bool
VTanhKernel
::
CanBeUsed
(
const
int
&
d
)
const
{
return
true
;
}
bool
SoftmaxKernel
::
UseMe
(
const
int
&
d
)
const
{
return
true
;
}
bool
SoftmaxKernel
::
CanBeUsed
(
const
int
&
d
)
const
{
return
true
;
}
bool
LSTMCtHtKernel
::
UseMe
(
const
lstm_attr_t
&
attr
)
const
{
return
true
;
}
bool
LSTMCtHtKernel
::
CanBeUsed
(
const
lstm_attr_t
&
attr
)
const
{
return
true
;
}
bool
LSTMC1H1Kernel
::
UseMe
(
const
lstm_attr_t
&
attr
)
const
{
return
true
;
}
bool
LSTMC1H1Kernel
::
CanBeUsed
(
const
lstm_attr_t
&
attr
)
const
{
return
true
;
}
bool
GRUH1Kernel
::
UseMe
(
const
gru_attr_t
&
attr
)
const
{
return
true
;
}
bool
GRUH1Kernel
::
CanBeUsed
(
const
gru_attr_t
&
attr
)
const
{
return
true
;
}
bool
GRUHtPart1Kernel
::
UseMe
(
const
gru_attr_t
&
attr
)
const
{
return
true
;
}
bool
GRUHtPart1Kernel
::
CanBeUsed
(
const
gru_attr_t
&
attr
)
const
{
return
true
;
}
bool
GRUHtPart2Kernel
::
UseMe
(
const
gru_attr_t
&
attr
)
const
{
return
true
;
}
bool
GRUHtPart2Kernel
::
CanBeUsed
(
const
gru_attr_t
&
attr
)
const
{
return
true
;
}
}
// namespace mix
}
// namespace more
...
...
paddle/fluid/operators/jit/more/mix/mix.h
浏览文件 @
45bdd84d
...
...
@@ -34,12 +34,12 @@ void GRUH1(gru_t* step, const gru_attr_t* attr);
void
GRUHtPart1
(
gru_t
*
step
,
const
gru_attr_t
*
attr
);
void
GRUHtPart2
(
gru_t
*
step
,
const
gru_attr_t
*
attr
);
#define DECLARE_MORE_KERNEL(name) \
class name##Kernel : public KernelMore<name##Tuple<T>> { \
public: \
name##Kernel() { this->func = name; } \
bool
UseMe
(const typename name##Tuple<T>::attr_type&) const override; \
const char* ImplType() const override { return "Mixed"; } \
#define DECLARE_MORE_KERNEL(name)
\
class name##Kernel : public KernelMore<name##Tuple<T>> {
\
public:
\
name##Kernel() { this->func = name; }
\
bool
CanBeUsed
(const typename name##Tuple<T>::attr_type&) const override; \
const char* ImplType() const override { return "Mixed"; }
\
}
// XYN
...
...
paddle/fluid/operators/jit/more/mkl/mkl.cc
浏览文件 @
45bdd84d
...
...
@@ -130,105 +130,106 @@ void ASum<double>(const double* x, double* res, int n) {
// TODO(TJ): tuning me carefully on AVX, AVX2 and AVX512
template
<
>
bool
VMulKernel
<
float
>::
UseMe
(
const
int
&
d
)
const
{
bool
VMulKernel
<
float
>::
CanBeUsed
(
const
int
&
d
)
const
{
return
platform
::
MayIUse
(
platform
::
avx512f
)
&&
d
>
512
;
}
template
<
>
bool
VAddKernel
<
float
>::
UseMe
(
const
int
&
d
)
const
{
bool
VAddKernel
<
float
>::
CanBeUsed
(
const
int
&
d
)
const
{
return
platform
::
MayIUse
(
platform
::
avx
)
&&
d
>
512
;
}
template
<
>
bool
VScalKernel
<
float
>::
UseMe
(
const
int
&
d
)
const
{
bool
VScalKernel
<
float
>::
CanBeUsed
(
const
int
&
d
)
const
{
return
platform
::
MayIUse
(
platform
::
avx512f
)
&&
d
>
512
;
}
template
<
>
bool
VExpKernel
<
float
>::
UseMe
(
const
int
&
d
)
const
{
bool
VExpKernel
<
float
>::
CanBeUsed
(
const
int
&
d
)
const
{
return
d
>
7
;
}
template
<
>
bool
VSquareKernel
<
float
>::
UseMe
(
const
int
&
d
)
const
{
bool
VSquareKernel
<
float
>::
CanBeUsed
(
const
int
&
d
)
const
{
return
d
>
7
;
}
template
<
>
bool
VCopyKernel
<
float
>::
UseMe
(
const
int
&
d
)
const
{
bool
VCopyKernel
<
float
>::
CanBeUsed
(
const
int
&
d
)
const
{
return
d
>
15
;
}
template
<
>
bool
VBroadcastKernel
<
float
>::
UseMe
(
const
int64_t
&
d
)
const
{
bool
VBroadcastKernel
<
float
>::
CanBeUsed
(
const
int64_t
&
d
)
const
{
return
d
>
127
;
}
template
<
>
bool
VBroadcastKernel
<
double
>::
UseMe
(
const
int64_t
&
attr
)
const
{
bool
VBroadcastKernel
<
double
>::
CanBeUsed
(
const
int64_t
&
attr
)
const
{
return
true
;
}
template
<
>
bool
VSigmoidKernel
<
float
>::
UseMe
(
const
int
&
d
)
const
{
bool
VSigmoidKernel
<
float
>::
CanBeUsed
(
const
int
&
d
)
const
{
return
d
>
7
;
}
template
<
>
bool
VTanhKernel
<
float
>::
UseMe
(
const
int
&
d
)
const
{
bool
VTanhKernel
<
float
>::
CanBeUsed
(
const
int
&
d
)
const
{
return
d
>
7
;
}
template
<
>
bool
SeqPoolKernel
<
float
>::
UseMe
(
const
seq_pool_attr_t
&
attr
)
const
{
bool
SeqPoolKernel
<
float
>::
CanBeUsed
(
const
seq_pool_attr_t
&
attr
)
const
{
return
true
;
}
template
<
>
bool
SeqPoolKernel
<
double
>::
UseMe
(
const
seq_pool_attr_t
&
attr
)
const
{
bool
SeqPoolKernel
<
double
>::
CanBeUsed
(
const
seq_pool_attr_t
&
attr
)
const
{
return
true
;
}
template
<
>
bool
EmbSeqPoolKernel
<
float
>::
UseMe
(
const
emb_seq_pool_attr_t
&
attr
)
const
{
bool
EmbSeqPoolKernel
<
float
>::
CanBeUsed
(
const
emb_seq_pool_attr_t
&
attr
)
const
{
return
true
;
}
template
<
>
bool
EmbSeqPoolKernel
<
double
>::
UseMe
(
const
emb_seq_pool_attr_t
&
attr
)
const
{
bool
EmbSeqPoolKernel
<
double
>::
CanBeUsed
(
const
emb_seq_pool_attr_t
&
attr
)
const
{
return
true
;
}
template
<
>
bool
SgdKernel
<
float
>::
UseMe
(
const
sgd_attr_t
&
attr
)
const
{
bool
SgdKernel
<
float
>::
CanBeUsed
(
const
sgd_attr_t
&
attr
)
const
{
return
true
;
}
template
<
>
bool
SgdKernel
<
double
>::
UseMe
(
const
sgd_attr_t
&
attr
)
const
{
bool
SgdKernel
<
double
>::
CanBeUsed
(
const
sgd_attr_t
&
attr
)
const
{
return
true
;
}
template
<
>
bool
MatMulKernel
<
float
>::
UseMe
(
const
matmul_attr_t
&
attr
)
const
{
bool
MatMulKernel
<
float
>::
CanBeUsed
(
const
matmul_attr_t
&
attr
)
const
{
return
platform
::
MayIUse
(
platform
::
avx
);
}
template
<
>
bool
MatMulKernel
<
double
>::
UseMe
(
const
matmul_attr_t
&
attr
)
const
{
bool
MatMulKernel
<
double
>::
CanBeUsed
(
const
matmul_attr_t
&
attr
)
const
{
return
true
;
}
template
<
>
bool
SoftmaxKernel
<
float
>::
UseMe
(
const
int
&
d
)
const
{
bool
SoftmaxKernel
<
float
>::
CanBeUsed
(
const
int
&
d
)
const
{
// tuned on avx2
return
platform
::
MayIUse
(
platform
::
avx
)
&&
d
<
60
;
}
#define AWALYS_USE_ME_WITH_DOUBLE(func) \
template <> \
bool func##Kernel<double>::
UseMe
(const int& d) const { \
return true; \
#define AWALYS_USE_ME_WITH_DOUBLE(func)
\
template <>
\
bool func##Kernel<double>::
CanBeUsed
(const int& d) const { \
return true;
\
}
AWALYS_USE_ME_WITH_DOUBLE
(
VMul
);
...
...
paddle/fluid/operators/jit/more/mkl/mkl.h
浏览文件 @
45bdd84d
...
...
@@ -175,13 +175,13 @@ void Sgd(const T* lr, const T* param, const T* grad, const int64_t* rows,
}
}
#define DECLARE_MKL_KERNEL(name) \
template <typename T> \
class name##Kernel : public KernelMore<name##Tuple<T>> { \
public: \
name##Kernel() { this->func = name<T>; } \
bool
UseMe
(const typename name##Tuple<T>::attr_type&) const override; \
const char* ImplType() const override { return "MKL"; } \
#define DECLARE_MKL_KERNEL(name)
\
template <typename T>
\
class name##Kernel : public KernelMore<name##Tuple<T>> {
\
public:
\
name##Kernel() { this->func = name<T>; }
\
bool
CanBeUsed
(const typename name##Tuple<T>::attr_type&) const override; \
const char* ImplType() const override { return "MKL"; }
\
}
// ABCMNK
...
...
paddle/fluid/operators/jit/registry.h
浏览文件 @
45bdd84d
...
...
@@ -49,8 +49,8 @@ struct JitKernelRegistrarFunctor<Pool, PlaceType, false, I, KernelImpls...> {
void
operator
()(
KernelType
kt
)
const
{
KernelKey
kkey
(
kt
,
PlaceType
());
Pool
().
Instance
().
Insert
(
kkey
,
std
::
move
(
make_unique
<
const
KERNEL_IMPL_TYPE
>
()));
Pool
::
Instance
().
Insert
(
kkey
,
std
::
move
(
make_unique
<
const
KERNEL_IMPL_TYPE
>
()));
constexpr
auto
size
=
std
::
tuple_size
<
std
::
tuple
<
KernelImpls
...
>>::
value
;
JitKernelRegistrarFunctor
<
Pool
,
PlaceType
,
I
+
1
==
size
,
I
+
1
,
KernelImpls
...
>
...
...
paddle/fluid/operators/jit/test.cc
浏览文件 @
45bdd84d
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include <algorithm>
#include <iostream>
#include <random>
#include <string>
#include <vector>
...
...
@@ -68,31 +69,11 @@ template <typename KernelTuple, typename PlaceType, typename Tester,
typename
...
Args
>
void
TestAllImpls
(
const
typename
KernelTuple
::
attr_type
&
attr
,
const
Tester
&
verifier
,
const
Args
&
...
args
)
{
// test jitcode
auto
jitcode
=
jit
::
GetJitCode
<
KernelTuple
,
PlaceType
>
(
attr
);
if
(
jitcode
)
{
VLOG
(
10
)
<<
"Test Jitcode Kernel "
;
verifier
(
jitcode
,
args
...);
auto
funcs
=
jit
::
GetAllCandidateFuncsWithTypes
<
KernelTuple
,
PlaceType
>
(
attr
);
for
(
auto
f
:
funcs
)
{
VLOG
(
10
)
<<
"Test Kernel "
<<
f
.
first
;
verifier
(
f
.
second
,
args
...);
}
// test all impls in more
jit
::
KernelKey
kkey
(
KernelTuple
::
kernel_type
,
PlaceType
());
auto
&
pool
=
jit
::
KernelPool
().
Instance
().
AllKernels
();
auto
iter
=
pool
.
find
(
kkey
);
if
(
iter
!=
pool
.
end
())
{
auto
&
impls
=
iter
->
second
;
for
(
auto
&
impl
:
impls
)
{
auto
i
=
dynamic_cast
<
const
jit
::
KernelMore
<
KernelTuple
>*>
(
impl
.
get
());
if
(
i
&&
i
->
UseMe
(
attr
))
{
auto
more
=
i
->
GetFunc
();
VLOG
(
10
)
<<
"Test More Kernel : "
<<
i
->
ImplType
();
verifier
(
more
,
args
...);
}
}
}
// test result from Get function
VLOG
(
10
)
<<
"Test final get function "
;
auto
tgt
=
jit
::
KernelFuncs
<
KernelTuple
,
PlaceType
>::
Cache
().
At
(
attr
);
verifier
(
tgt
,
args
...);
}
template
<
typename
KernelTuple
,
typename
PlaceType
>
...
...
@@ -100,7 +81,7 @@ void TestKernelXYZN() {
using
T
=
typename
KernelTuple
::
data_type
;
VLOG
(
10
)
<<
"Test JITKernel: "
<<
jit
::
to_string
(
KernelTuple
::
kernel_type
);
for
(
int
d
:
TestSizes
())
{
auto
ref
=
jit
::
GetRefer
<
KernelTuple
>
();
auto
ref
=
jit
::
GetRefer
Func
<
KernelTuple
>
();
EXPECT_TRUE
(
ref
!=
nullptr
);
std
::
vector
<
T
>
x
(
d
),
y
(
d
),
zref
(
d
);
...
...
@@ -159,7 +140,7 @@ void TestKernelAXYN() {
using
T
=
typename
KernelTuple
::
data_type
;
VLOG
(
10
)
<<
"Test JITKernel: "
<<
jit
::
to_string
(
KernelTuple
::
kernel_type
);
for
(
int
d
:
TestSizes
())
{
auto
ref
=
jit
::
GetRefer
<
KernelTuple
>
();
auto
ref
=
jit
::
GetRefer
Func
<
KernelTuple
>
();
EXPECT_TRUE
(
ref
!=
nullptr
);
const
T
a
=
static_cast
<
T
>
(
3
);
...
...
@@ -202,7 +183,7 @@ void TestKernelXYN() {
using
T
=
typename
KernelTuple
::
data_type
;
VLOG
(
10
)
<<
"Test JITKernel: "
<<
jit
::
to_string
(
KernelTuple
::
kernel_type
);
for
(
int
d
:
TestSizes
())
{
auto
ref
=
jit
::
GetRefer
<
KernelTuple
>
();
auto
ref
=
jit
::
GetRefer
Func
<
KernelTuple
>
();
EXPECT_TRUE
(
ref
!=
nullptr
);
std
::
vector
<
T
>
x
(
d
),
yref
(
d
);
...
...
@@ -245,7 +226,7 @@ void TestKernelXRN() {
auto
last_acc
=
FLAGS_acc
;
FLAGS_acc
=
1e-4
;
for
(
int
d
:
TestSizes
())
{
auto
ref
=
jit
::
GetRefer
<
KernelTuple
>
();
auto
ref
=
jit
::
GetRefer
Func
<
KernelTuple
>
();
EXPECT_TRUE
(
ref
!=
nullptr
);
std
::
vector
<
T
>
x
(
d
);
RandomVec
<
T
>
(
d
,
x
.
data
());
...
...
@@ -279,7 +260,7 @@ void TestKernelLSTM() {
const
jit
::
lstm_attr_t
attr
(
d
,
jit
::
to_kerneltype
(
act_gate
),
jit
::
to_kerneltype
(
act_cand
),
jit
::
to_kerneltype
(
act_cell
),
use_peephole
);
auto
ref
=
jit
::
GetRefer
<
KernelTuple
>
();
auto
ref
=
jit
::
GetRefer
Func
<
KernelTuple
>
();
EXPECT_TRUE
(
ref
!=
nullptr
);
std
::
vector
<
T
>
xsrc
(
4
*
d
),
wp
(
3
*
d
),
ct_1
(
d
);
std
::
vector
<
T
>
ct_ref
(
d
),
ht_ref
(
d
),
checked
(
2
*
d
);
...
...
@@ -370,7 +351,7 @@ void TestKernelGRU() {
for
(
auto
&
act_cand
:
all_acts
)
{
const
jit
::
gru_attr_t
attr
(
d
,
jit
::
to_kerneltype
(
act_gate
),
jit
::
to_kerneltype
(
act_cand
));
auto
ref
=
jit
::
GetRefer
<
KernelTuple
>
();
auto
ref
=
jit
::
GetRefer
Func
<
KernelTuple
>
();
EXPECT_TRUE
(
ref
!=
nullptr
);
std
::
vector
<
T
>
xsrc
(
3
*
d
),
ht_1
(
d
),
ht_ref
(
d
);
RandomVec
<
T
>
(
3
*
d
,
xsrc
.
data
());
...
...
@@ -423,7 +404,7 @@ void TestKernelNCHW16CMulNC() {
using
T
=
typename
KernelTuple
::
data_type
;
VLOG
(
10
)
<<
"Test JITKernel: "
<<
jit
::
to_string
(
KernelTuple
::
kernel_type
);
const
int
n
=
3
,
c
=
16
*
4
,
h
=
10
,
w
=
10
;
auto
ref
=
jit
::
GetRefer
<
KernelTuple
>
();
auto
ref
=
jit
::
GetRefer
Func
<
KernelTuple
>
();
EXPECT_TRUE
(
ref
!=
nullptr
);
int
sz
=
n
*
c
*
h
*
w
;
std
::
vector
<
T
>
x
(
sz
),
y
(
n
*
c
),
zref
(
sz
);
...
...
@@ -439,7 +420,9 @@ void TestKernelNCHW16CMulNC() {
constexpr
int
simd_width
=
ZMM_FLOAT_BLOCK
;
int
C
=
c
/
simd_width
;
auto
tgt
=
jit
::
KernelFuncs
<
KernelTuple
,
PlaceType
>::
Cache
().
At
(
0
);
auto
jitcode
=
jit
::
GetJitCode
<
KernelTuple
,
PlaceType
>
(
0
);
auto
funcs
=
jit
::
GetAllCandidateFuncs
<
KernelTuple
,
PlaceType
>
(
0
);
EXPECT_GT
(
funcs
.
size
(),
0UL
);
auto
jitcode
=
funcs
[
0
];
EXPECT_TRUE
(
tgt
!=
nullptr
);
if
(
std
::
is_same
<
T
,
float
>::
value
&&
...
...
@@ -482,7 +465,7 @@ void TestKernelLayerNorm() {
int
left
=
n
*
x_dim_0
;
for
(
int
x_dim_1
:
TestSizes
())
{
int
right
=
x_dim_1
;
auto
ref
=
jit
::
GetRefer
<
KernelTuple
>
();
auto
ref
=
jit
::
GetRefer
Func
<
KernelTuple
>
();
EXPECT_TRUE
(
ref
!=
nullptr
);
int
sz
=
left
*
right
;
std
::
vector
<
T
>
x
(
sz
),
mean
(
left
),
var
(
left
),
scale
(
right
),
bias
(
right
),
...
...
@@ -555,7 +538,7 @@ void TestKernelCRFDecoding() {
test_sizes
.
erase
(
std
::
remove
(
test_sizes
.
begin
(),
test_sizes
.
end
(),
2000
));
for
(
int
seq_len
:
{
1
,
11
,
17
,
50
})
{
for
(
int
tag_num
:
test_sizes
)
{
auto
ref
=
jit
::
GetRefer
<
KernelTuple
>
();
auto
ref
=
jit
::
GetRefer
Func
<
KernelTuple
>
();
EXPECT_TRUE
(
ref
!=
nullptr
);
int
x_sz
=
seq_len
*
tag_num
;
int
w_sz
=
(
tag_num
+
state_trans_base_idx
)
*
tag_num
;
...
...
@@ -606,7 +589,7 @@ void TestKernelSeqPool() {
jit
::
seq_pool_attr_t
attr
(
w
,
type
);
for
(
int
h
:
test_sizes
)
{
attr
.
h
=
h
;
auto
ref
=
jit
::
GetRefer
<
KernelTuple
>
();
auto
ref
=
jit
::
GetRefer
Func
<
KernelTuple
>
();
EXPECT_TRUE
(
ref
!=
nullptr
);
std
::
vector
<
T
>
x
(
h
*
w
),
yref
(
w
);
RandomVec
<
T
>
(
h
*
w
,
x
.
data
());
...
...
@@ -649,7 +632,7 @@ void TestKernelEmbSeqPool() {
for
(
auto
type
:
pool_types
)
{
for
(
int
idx_w
:
{
1
,
2
,
10
,
16
})
{
for
(
int
idx_h
:
{
1
,
2
,
9
,
13
,
16
})
{
auto
ref
=
jit
::
GetRefer
<
KernelTuple
>
();
auto
ref
=
jit
::
GetRefer
Func
<
KernelTuple
>
();
EXPECT_TRUE
(
ref
!=
nullptr
);
std
::
vector
<
int64_t
>
idx
(
idx_h
*
idx_w
);
RandomVec
<
int64_t
>
(
idx_h
*
idx_w
,
idx
.
data
(),
0
,
tbl_h
-
1
);
...
...
@@ -701,7 +684,7 @@ void TestKernelMatMul() {
for
(
int
m
:
{
1
,
2
,
3
,
4
})
{
for
(
int
n
:
{
1
,
2
,
3
,
4
})
{
for
(
int
k
:
TestSizes
())
{
auto
ref
=
jit
::
GetRefer
<
KernelTuple
>
();
auto
ref
=
jit
::
GetRefer
Func
<
KernelTuple
>
();
EXPECT_TRUE
(
ref
!=
nullptr
);
std
::
vector
<
T
>
a
(
m
*
k
),
b
(
k
*
n
),
c
(
m
*
n
);
RandomVec
<
T
>
(
m
*
k
,
a
.
data
());
...
...
@@ -740,7 +723,7 @@ void TestKernelSoftmax() {
VLOG
(
10
)
<<
"Test JITKernel: "
<<
jit
::
to_string
(
KernelTuple
::
kernel_type
);
for
(
int
bs
:
{
1
,
2
,
10
})
{
for
(
int
n
:
TestSizes
())
{
auto
ref
=
jit
::
GetRefer
<
KernelTuple
>
();
auto
ref
=
jit
::
GetRefer
Func
<
KernelTuple
>
();
EXPECT_TRUE
(
ref
!=
nullptr
);
std
::
vector
<
T
>
x
(
bs
*
n
),
y
(
bs
*
n
);
RandomVec
<
T
>
(
bs
*
n
,
x
.
data
());
...
...
@@ -808,7 +791,7 @@ void TestKernelSgd() {
RandomVec
<
T
>
(
rows_size
*
grad_w
,
grad
.
data
());
const
int64_t
*
rows_data
=
rows
.
data
();
const
T
*
grad_data
=
grad
.
data
();
auto
ref
=
jit
::
GetRefer
<
KernelTuple
>
();
auto
ref
=
jit
::
GetRefer
Func
<
KernelTuple
>
();
EXPECT_TRUE
(
ref
!=
nullptr
);
jit
::
sgd_attr_t
attr
(
param_h
,
grad_w
,
rows_size
,
grad_w
,
rows_size
);
ref
(
&
lr
,
param_data
,
grad_data
,
rows_data
,
out_data
,
&
attr
);
...
...
@@ -874,7 +857,7 @@ void TestKernelVBroadcast() {
RandomVec
<
T
>
(
w
,
x
.
data
());
const
T
*
x_data
=
x
.
data
();
for
(
int64_t
h
:
{
1
,
2
,
6
})
{
auto
ref
=
jit
::
GetRefer
<
KernelTuple
>
();
auto
ref
=
jit
::
GetRefer
Func
<
KernelTuple
>
();
EXPECT_TRUE
(
ref
!=
nullptr
);
std
::
vector
<
T
>
y
(
w
*
h
);
T
*
y_data
=
y
.
data
();
...
...
@@ -900,6 +883,135 @@ void TestKernelVBroadcast() {
}
}
// test pool
TEST
(
JITKernel_pool
,
jitcreator
)
{
const
auto
&
jitcreators
=
jit
::
JitCodeCreatorPool
::
Instance
().
AllCreators
();
EXPECT_EQ
(
jitcreators
.
size
(),
25UL
);
}
TEST
(
JITKernel_pool
,
jitpool
)
{
// jitpool is related with attr
const
auto
&
kers
=
jit
::
JitCodePool
<
jit
::
kVAdd
>
().
Instance
().
AllKernels
();
EXPECT_EQ
(
kers
.
size
(),
0UL
);
jit
::
GetAllCandidateKernels
<
jit
::
VAddTuple
<
float
>
,
CPUPlace
>
(
3
);
// after call GetAllCandidateKernels, it will create jitcode Automatically
EXPECT_EQ
(
kers
.
size
(),
1UL
);
}
TEST
(
JITKernel_pool
,
more
)
{
const
auto
&
kers
=
jit
::
KernelPool
::
Instance
().
AllKernels
();
EXPECT_EQ
(
kers
.
size
(),
21UL
);
}
TEST
(
JITKernel_pool
,
refer
)
{
const
auto
&
kers
=
jit
::
ReferKernelPool
::
Instance
().
AllKernels
();
EXPECT_EQ
(
kers
.
size
(),
29UL
);
}
// test helper
TEST
(
JITKernel_helper
,
GetAllCandidateKernels
)
{
auto
fp_kers
=
jit
::
GetAllCandidateKernels
<
jit
::
VExpTuple
<
float
>
,
CPUPlace
>
(
10
);
#if defined(_WIN32) || defined(__APPLE__) || defined(__OSX__)
EXPECT_GE
(
fp_kers
.
size
(),
1UL
);
// refer
#else
EXPECT_GE
(
fp_kers
.
size
(),
3UL
);
// jitcode, mkl, refer
#endif
auto
db_kers
=
jit
::
GetAllCandidateKernels
<
jit
::
VExpTuple
<
double
>
,
CPUPlace
>
(
10
);
#if defined(_WIN32) || defined(__APPLE__) || defined(__OSX__)
EXPECT_GE
(
db_kers
.
size
(),
1UL
);
// refer
#else
EXPECT_GE
(
db_kers
.
size
(),
2UL
);
// mkl, refer
#endif
}
TEST
(
JITKernel_helper
,
GetAllCandidateFuncsWithTypes
)
{
auto
fp_kers
=
jit
::
GetAllCandidateFuncsWithTypes
<
jit
::
VExpTuple
<
float
>
,
CPUPlace
>
(
10
);
EXPECT_GE
(
fp_kers
.
size
(),
3UL
);
// jitcode, mkl, refer
auto
db_kers
=
jit
::
GetAllCandidateFuncsWithTypes
<
jit
::
VExpTuple
<
double
>
,
CPUPlace
>
(
10
);
EXPECT_GE
(
db_kers
.
size
(),
2UL
);
// mkl, refer
}
TEST
(
JITKernel_helper
,
GetAllCandidateFuncs
)
{
auto
funcs
=
jit
::
GetAllCandidateFuncs
<
jit
::
VExpTuple
<
float
>
,
CPUPlace
>
(
10
);
auto
kers
=
jit
::
GetAllCandidateKernels
<
jit
::
VExpTuple
<
float
>
,
CPUPlace
>
(
10
);
EXPECT_EQ
(
funcs
.
size
(),
kers
.
size
());
std
::
vector
<
float
>
x
(
10
),
tgt
(
10
);
RandomVec
<
float
>
(
10
,
x
.
data
());
auto
best
=
jit
::
GetDefaultBestFunc
<
jit
::
VExpTuple
<
float
>
,
CPUPlace
>
(
10
);
best
(
x
.
data
(),
tgt
.
data
(),
10
);
for
(
auto
f
:
funcs
)
{
std
::
vector
<
float
>
y
(
10
);
f
(
x
.
data
(),
y
.
data
(),
10
);
ExpectEQ
<
float
>
(
y
.
data
(),
tgt
.
data
(),
10
);
}
}
TEST
(
JITKernel_helper
,
attr
)
{
std
::
ostringstream
out
;
// KernelTypes
out
<<
jit
::
to_string
(
jit
::
kNone
)
<<
jit
::
to_string
(
jit
::
kCRFDecoding
)
<<
jit
::
to_string
(
jit
::
kEmbSeqPool
)
<<
jit
::
to_string
(
jit
::
kGRUH1
)
<<
jit
::
to_string
(
jit
::
kGRUHtPart1
)
<<
jit
::
to_string
(
jit
::
kGRUHtPart2
)
<<
jit
::
to_string
(
jit
::
kHSum
)
<<
jit
::
to_string
(
jit
::
kHMax
)
<<
jit
::
to_string
(
jit
::
kLSTMCtHt
)
<<
jit
::
to_string
(
jit
::
kLSTMC1H1
)
<<
jit
::
to_string
(
jit
::
kLayerNorm
)
<<
jit
::
to_string
(
jit
::
kMatMul
)
<<
jit
::
to_string
(
jit
::
kNCHW16CMulNC
)
<<
jit
::
to_string
(
jit
::
kSeqPool
)
<<
jit
::
to_string
(
jit
::
kSoftmax
)
<<
jit
::
to_string
(
jit
::
kVAdd
)
<<
jit
::
to_string
(
jit
::
kVAddBias
)
<<
jit
::
to_string
(
jit
::
kVAddRelu
)
<<
jit
::
to_string
(
jit
::
kVBroadcast
)
<<
jit
::
to_string
(
jit
::
kVCopy
)
<<
jit
::
to_string
(
jit
::
kVExp
)
<<
jit
::
to_string
(
jit
::
kVIdentity
)
<<
jit
::
to_string
(
jit
::
kVMul
)
<<
jit
::
to_string
(
jit
::
kVRelu
)
<<
jit
::
to_string
(
jit
::
kVScal
)
<<
jit
::
to_string
(
jit
::
kSgd
)
<<
jit
::
to_string
(
jit
::
kVSigmoid
)
<<
jit
::
to_string
(
jit
::
kVSquare
)
<<
jit
::
to_string
(
jit
::
kVSub
)
<<
jit
::
to_string
(
jit
::
kVTanh
);
EXPECT_EQ
(
out
.
str
().
size
(),
234
);
// SeqPoolTypes
out
.
str
(
""
);
out
<<
jit
::
to_string
(
jit
::
kSum
)
<<
jit
::
to_string
(
jit
::
kAvg
)
<<
jit
::
to_string
(
jit
::
kSqrt
);
EXPECT_EQ
(
out
.
str
().
size
(),
13
);
EXPECT_EQ
(
jit
::
to_kerneltype
(
"relu"
),
jit
::
kVRelu
);
EXPECT_EQ
(
jit
::
to_kerneltype
(
"Identity"
),
jit
::
kVIdentity
);
EXPECT_EQ
(
jit
::
to_kerneltype
(
"VEXP"
),
jit
::
kVExp
);
EXPECT_EQ
(
jit
::
to_kerneltype
(
"SigmoiD"
),
jit
::
kVSigmoid
);
EXPECT_EQ
(
jit
::
to_kerneltype
(
"VTanh"
),
jit
::
kVTanh
);
out
.
str
(
""
);
out
<<
jit
::
lstm_attr_t
(
8
,
jit
::
kVIdentity
,
jit
::
kVSigmoid
,
jit
::
kVTanh
);
EXPECT_EQ
(
out
.
str
().
size
(),
89
);
out
.
str
(
""
);
out
<<
jit
::
gru_attr_t
(
8
,
jit
::
kVIdentity
,
jit
::
kVSigmoid
);
EXPECT_EQ
(
out
.
str
().
size
(),
52
);
out
.
str
(
""
);
out
<<
jit
::
seq_pool_attr_t
(
8
,
jit
::
SeqPoolType
::
kSum
);
EXPECT_EQ
(
out
.
str
().
size
(),
44
);
out
.
str
(
""
);
out
<<
jit
::
emb_seq_pool_attr_t
(
1
,
2
,
3
,
4
,
5
,
jit
::
SeqPoolType
::
kAvg
);
EXPECT_EQ
(
out
.
str
().
size
(),
93
);
out
.
str
(
""
);
out
<<
jit
::
sgd_attr_t
(
1
,
2
,
3
,
4
,
5
);
EXPECT_EQ
(
out
.
str
().
size
(),
81
);
out
.
str
(
""
);
out
<<
jit
::
matmul_attr_t
(
1
,
2
,
3
);
EXPECT_EQ
(
out
.
str
().
size
(),
14
);
}
// test kernerls
#define TestKernelVMul TestKernelXYZN
#define TestKernelVAdd TestKernelXYZN
#define TestKernelVAddRelu TestKernelXYZN
...
...
@@ -969,6 +1081,14 @@ TEST_CPU_KERNEL(Softmax);
TEST_CPU_KERNEL
(
Sgd
);
TEST_CPU_KERNEL
(
VBroadcast
);
TEST
(
JITKernel
,
kernel_func
)
{
auto
f1
=
jit
::
KernelFuncs
<
jit
::
VAddTuple
<
float
>
,
CPUPlace
>::
Cache
().
At
(
3
);
auto
f2
=
jit
::
KernelFuncs
<
jit
::
VAddTuple
<
float
>
,
CPUPlace
>::
Cache
()[
3
];
EXPECT_TRUE
(
f1
!=
nullptr
);
EXPECT_TRUE
(
f1
==
f2
);
// TODO(TJ): check not equal
}
TEST
(
JITKernel_key
,
lstm
)
{
jit
::
lstm_attr_t
attr1
(
8
,
jit
::
kVIdentity
,
jit
::
kVSigmoid
,
jit
::
kVTanh
);
jit
::
lstm_attr_t
attr2
(
9
,
jit
::
kVIdentity
,
jit
::
kVSigmoid
,
jit
::
kVTanh
);
...
...
@@ -1000,11 +1120,3 @@ TEST(JITKernel_key, gru) {
EXPECT_TRUE
(
key2
==
key3
);
EXPECT_TRUE
(
key3
!=
key4
);
}
TEST
(
JITKernel
,
kernel_func
)
{
auto
f1
=
jit
::
KernelFuncs
<
jit
::
VAddTuple
<
float
>
,
CPUPlace
>::
Cache
().
At
(
3
);
auto
f2
=
jit
::
KernelFuncs
<
jit
::
VAddTuple
<
float
>
,
CPUPlace
>::
Cache
()[
3
];
EXPECT_TRUE
(
f1
!=
nullptr
);
EXPECT_TRUE
(
f1
==
f2
);
// TODO(TJ): check not equal
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录