test_roi_align_op.py 7.2 KB
Newer Older
J
jerrywgz 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
#    Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
import math
import sys
from op_test import OpTest


class TestROIAlignOp(OpTest):
    def set_data(self):
        self.init_test_case()
        self.make_rois()
        self.calc_roi_align()
        self.inputs = {'X': self.x, 'ROIs': (self.rois[:, 1:5], self.rois_lod)}
        self.attrs = {
            'spatial_scale': self.spatial_scale,
            'pooled_height': self.pooled_height,
            'pooled_width': self.pooled_width,
            'sampling_ratio': self.sampling_ratio
        }

        self.outputs = {'Out': self.out_data}

    def init_test_case(self):
J
jerrywgz 已提交
40
        self.batch_size = 3
J
jerrywgz 已提交
41 42 43 44 45 46 47
        self.channels = 3
        self.height = 8
        self.width = 6

        # n, c, h, w
        self.x_dim = (self.batch_size, self.channels, self.height, self.width)

48
        self.spatial_scale = 1.0 / 2.0
J
jerrywgz 已提交
49 50
        self.pooled_height = 2
        self.pooled_width = 2
J
jerrywgz 已提交
51
        self.sampling_ratio = -1
J
jerrywgz 已提交
52 53 54 55 56 57 58 59

        self.x = np.random.random(self.x_dim).astype('float32')

    def pre_calc(self, x_i, roi_xmin, roi_ymin, roi_bin_grid_h, roi_bin_grid_w,
                 bin_size_h, bin_size_w):
        count = roi_bin_grid_h * roi_bin_grid_w
        bilinear_pos = np.zeros(
            [self.channels, self.pooled_height, self.pooled_width, count, 4],
J
jerrywgz 已提交
60
            np.float32)
J
jerrywgz 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
        bilinear_w = np.zeros(
            [self.pooled_height, self.pooled_width, count, 4], np.float32)
        for ph in range(self.pooled_width):
            for pw in range(self.pooled_height):
                c = 0
                for iy in range(roi_bin_grid_h):
                    y = roi_ymin + ph * bin_size_h + (iy + 0.5) * \
                        bin_size_h / roi_bin_grid_h
                    for ix in range(roi_bin_grid_w):
                        x = roi_xmin + pw * bin_size_w + (ix + 0.5) * \
                            bin_size_w / roi_bin_grid_w
                        if y < -1.0 or y > self.height or \
                               x < -1.0 or x > self.width:
                            continue
                        if y <= 0:
                            y = 0
                        if x <= 0:
                            x = 0
                        y_low = int(y)
                        x_low = int(x)
                        if y_low >= self.height - 1:
                            y = y_high = y_low = self.height - 1
                        else:
                            y_high = y_low + 1
                        if x_low >= self.width - 1:
                            x = x_high = x_low = self.width - 1
                        else:
J
jerrywgz 已提交
88
                            x_high = x_low + 1
J
jerrywgz 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
                        ly = y - y_low
                        lx = x - x_low
                        hy = 1 - ly
                        hx = 1 - lx
                        for ch in range(self.channels):
                            bilinear_pos[ch, ph, pw, c, 0] = x_i[ch, y_low,
                                                                 x_low]
                            bilinear_pos[ch, ph, pw, c, 1] = x_i[ch, y_low,
                                                                 x_high]
                            bilinear_pos[ch, ph, pw, c, 2] = x_i[ch, y_high,
                                                                 x_low]
                            bilinear_pos[ch, ph, pw, c, 3] = x_i[ch, y_high,
                                                                 x_high]
                        bilinear_w[ph, pw, c, 0] = hy * hx
                        bilinear_w[ph, pw, c, 1] = hy * lx
                        bilinear_w[ph, pw, c, 2] = ly * hx
                        bilinear_w[ph, pw, c, 3] = ly * lx
                        c = c + 1
        return bilinear_pos, bilinear_w

    def calc_roi_align(self):
J
jerrywgz 已提交
110 111 112
        self.out_data = np.zeros(
            (self.rois_num, self.channels, self.pooled_height,
             self.pooled_width)).astype('float32')
J
jerrywgz 已提交
113 114 115 116 117 118 119 120 121

        for i in range(self.rois_num):
            roi = self.rois[i]
            roi_batch_id = int(roi[0])
            x_i = self.x[roi_batch_id]
            roi_xmin = roi[1] * self.spatial_scale
            roi_ymin = roi[2] * self.spatial_scale
            roi_xmax = roi[3] * self.spatial_scale
            roi_ymax = roi[4] * self.spatial_scale
122 123
            roi_width = max(roi_xmax - roi_xmin, 1)
            roi_height = max(roi_ymax - roi_ymin, 1)
J
jerrywgz 已提交
124 125 126
            bin_size_h = float(roi_height) / float(self.pooled_height)
            bin_size_w = float(roi_width) / float(self.pooled_width)
            roi_bin_grid_h = self.sampling_ratio if self.sampling_ratio > 0 else \
127
                                 math.ceil(roi_height / self.pooled_height)
J
jerrywgz 已提交
128
            roi_bin_grid_w = self.sampling_ratio if self.sampling_ratio > 0 else \
129
                                 math.ceil(roi_width / self.pooled_width)
J
jerrywgz 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142
            count = int(roi_bin_grid_h * roi_bin_grid_w)
            pre_size = count * self.pooled_width * self.pooled_height
            bilinear_pos, bilinear_w = self.pre_calc(x_i, roi_xmin, roi_ymin,
                                                     int(roi_bin_grid_h),
                                                     int(roi_bin_grid_w),
                                                     bin_size_h, bin_size_w)
            for ch in range(self.channels):
                align_per_bin = (bilinear_pos[ch] * bilinear_w).sum(axis=-1)
                output_val = align_per_bin.mean(axis=-1)
                self.out_data[i, ch, :, :] = output_val

    def make_rois(self):
        rois = []
J
jerrywgz 已提交
143
        self.rois_lod = [[]]
J
jerrywgz 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
        for bno in range(self.batch_size):
            self.rois_lod[0].append(bno + 1)
            for i in range(bno + 1):
                x1 = np.random.random_integers(
                    0, self.width // self.spatial_scale - self.pooled_width)
                y1 = np.random.random_integers(
                    0, self.height // self.spatial_scale - self.pooled_height)

                x2 = np.random.random_integers(x1 + self.pooled_width,
                                               self.width // self.spatial_scale)
                y2 = np.random.random_integers(
                    y1 + self.pooled_height, self.height // self.spatial_scale)

                roi = [bno, x1, y1, x2, y2]
                rois.append(roi)
        self.rois_num = len(rois)
        self.rois = np.array(rois).astype("float32")

    def setUp(self):
        self.op_type = "roi_align"
        self.set_data()

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
J
jerrywgz 已提交
170
        self.check_grad(['X'], 'Out')
S
sneaxiy 已提交
171 172 173 174


if __name__ == '__main__':
    unittest.main()