test_roi_align_op.py 7.1 KB
Newer Older
J
jerrywgz 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
#    Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
import math
import sys
from op_test import OpTest


class TestROIAlignOp(OpTest):
    def set_data(self):
        self.init_test_case()
        self.make_rois()
        self.calc_roi_align()
        self.inputs = {'X': self.x, 'ROIs': (self.rois[:, 1:5], self.rois_lod)}
        self.attrs = {
            'spatial_scale': self.spatial_scale,
            'pooled_height': self.pooled_height,
            'pooled_width': self.pooled_width,
            'sampling_ratio': self.sampling_ratio
        }

        self.outputs = {'Out': self.out_data}

    def init_test_case(self):
        self.batch_size = 1
        self.channels = 3
        self.height = 8
        self.width = 6

        # n, c, h, w
        self.x_dim = (self.batch_size, self.channels, self.height, self.width)

        self.spatial_scale = 1.0 / 1.0
        self.pooled_height = 2
        self.pooled_width = 2
        self.sampling_ratio = 2

        self.x = np.random.random(self.x_dim).astype('float32')

    def pre_calc(self, x_i, roi_xmin, roi_ymin, roi_bin_grid_h, roi_bin_grid_w,
                 bin_size_h, bin_size_w):
        count = roi_bin_grid_h * roi_bin_grid_w
        bilinear_pos = np.zeros(
            [self.channels, self.pooled_height, self.pooled_width, count, 4],
            np.int32)
        bilinear_w = np.zeros(
            [self.pooled_height, self.pooled_width, count, 4], np.float32)
        for ph in range(self.pooled_width):
            for pw in range(self.pooled_height):
                c = 0
                for iy in range(roi_bin_grid_h):
                    y = roi_ymin + ph * bin_size_h + (iy + 0.5) * \
                        bin_size_h / roi_bin_grid_h
                    for ix in range(roi_bin_grid_w):
                        x = roi_xmin + pw * bin_size_w + (ix + 0.5) * \
                            bin_size_w / roi_bin_grid_w
                        if y < -1.0 or y > self.height or \
                               x < -1.0 or x > self.width:
                            continue
                        if y <= 0:
                            y = 0
                        if x <= 0:
                            x = 0
                        y_low = int(y)
                        x_low = int(x)
                        if y_low >= self.height - 1:
                            y = y_high = y_low = self.height - 1
                        else:
                            y_high = y_low + 1
                        if x_low >= self.width - 1:
                            x = x_high = x_low = self.width - 1
                        else:
                            x_high = x_low = self.width - 1
                        ly = y - y_low
                        lx = x - x_low
                        hy = 1 - ly
                        hx = 1 - lx
                        for ch in range(self.channels):
                            bilinear_pos[ch, ph, pw, c, 0] = x_i[ch, y_low,
                                                                 x_low]
                            bilinear_pos[ch, ph, pw, c, 1] = x_i[ch, y_low,
                                                                 x_high]
                            bilinear_pos[ch, ph, pw, c, 2] = x_i[ch, y_high,
                                                                 x_low]
                            bilinear_pos[ch, ph, pw, c, 3] = x_i[ch, y_high,
                                                                 x_high]
                        bilinear_w[ph, pw, c, 0] = hy * hx
                        bilinear_w[ph, pw, c, 1] = hy * lx
                        bilinear_w[ph, pw, c, 2] = ly * hx
                        bilinear_w[ph, pw, c, 3] = ly * lx
                        c = c + 1
        return bilinear_pos, bilinear_w

    def calc_roi_align(self):
        self.out_data = np.zeros((self.rois_num, self.channels,
                                  self.pooled_height, self.pooled_width))

        for i in range(self.rois_num):
            roi = self.rois[i]
            roi_batch_id = int(roi[0])
            x_i = self.x[roi_batch_id]
            roi_xmin = roi[1] * self.spatial_scale
            roi_ymin = roi[2] * self.spatial_scale
            roi_xmax = roi[3] * self.spatial_scale
            roi_ymax = roi[4] * self.spatial_scale
            roi_width = int(max(roi_xmax - roi_xmin, 1))
            roi_height = int(max(roi_ymax - roi_ymin, 1))
            bin_size_h = float(roi_height) / float(self.pooled_height)
            bin_size_w = float(roi_width) / float(self.pooled_width)
            roi_bin_grid_h = self.sampling_ratio if self.sampling_ratio > 0 else \
                                 math.ceil(roi_height / pooled_height)
            roi_bin_grid_w = self.sampling_ratio if self.sampling_ratio > 0 else \
                                 math.ceil(roi_width / pooled_width)
            count = int(roi_bin_grid_h * roi_bin_grid_w)
            pre_size = count * self.pooled_width * self.pooled_height
            bilinear_pos, bilinear_w = self.pre_calc(x_i, roi_xmin, roi_ymin,
                                                     int(roi_bin_grid_h),
                                                     int(roi_bin_grid_w),
                                                     bin_size_h, bin_size_w)
            for ch in range(self.channels):
                align_per_bin = (bilinear_pos[ch] * bilinear_w).sum(axis=-1)
                output_val = align_per_bin.mean(axis=-1)
                self.out_data[i, ch, :, :] = output_val

    def make_rois(self):
        rois = []
        self.rois_lod = [[0]]
        for bno in range(self.batch_size):
            self.rois_lod[0].append(bno + 1)
            for i in range(bno + 1):
                x1 = np.random.random_integers(
                    0, self.width // self.spatial_scale - self.pooled_width)
                y1 = np.random.random_integers(
                    0, self.height // self.spatial_scale - self.pooled_height)

                x2 = np.random.random_integers(x1 + self.pooled_width,
                                               self.width // self.spatial_scale)
                y2 = np.random.random_integers(
                    y1 + self.pooled_height, self.height // self.spatial_scale)

                roi = [bno, x1, y1, x2, y2]
                rois.append(roi)
        self.rois_num = len(rois)
        self.rois = np.array(rois).astype("float32")

    def setUp(self):
        self.op_type = "roi_align"
        self.set_data()

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')