solov2_head.py 18.5 KB
Newer Older
G
Guanghua Yu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

G
Guanghua Yu 已提交
15 16 17
# The code is based on:
# https://github.com/WXinlong/SOLO/blob/master/mmdet/models/anchor_heads/solov2_head.py

G
Guanghua Yu 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
from paddle import fluid
from paddle.fluid.param_attr import ParamAttr

from ppdet.modeling.ops import ConvNorm, DeformConvNorm, MaskMatrixNMS, DropBlock
from ppdet.core.workspace import register

from six.moves import zip
import numpy as np

__all__ = ['SOLOv2Head']


@register
class SOLOv2Head(object):
    """
    Head block for SOLOv2 network

    Args:
        num_classes (int): Number of output classes.
        seg_feat_channels (int): Num_filters of kernel & categroy branch convolution operation.
        stacked_convs (int): Times of convolution operation.
        num_grids (list[int]): List of feature map grids size.
        kernel_out_channels (int): Number of output channels in kernel branch.
        dcn_v2_stages (list): Which stage use dcn v2 in tower.
        segm_strides (list[int]): List of segmentation area stride.
        solov2_loss (object): SOLOv2Loss instance.
        score_threshold (float): Threshold of categroy score.
        mask_nms (object): MaskMatrixNMS instance.
        drop_block (bool): Whether use drop_block or not.
    """
    __inject__ = ['solov2_loss', 'mask_nms']
    __shared__ = ['num_classes']

    def __init__(self,
                 num_classes=80,
                 seg_feat_channels=256,
                 stacked_convs=4,
                 num_grids=[40, 36, 24, 16, 12],
                 kernel_out_channels=256,
                 dcn_v2_stages=[],
                 segm_strides=[8, 8, 16, 32, 32],
                 solov2_loss=None,
                 score_threshold=0.1,
                 mask_threshold=0.5,
                 mask_nms=MaskMatrixNMS(
                     update_threshold=0.05,
                     pre_nms_top_n=500,
                     post_nms_top_n=100,
                     kernel='gaussian',
                     sigma=2.0).__dict__,
                 drop_block=False):
        self.num_classes = num_classes
        self.seg_num_grids = num_grids
        self.cate_out_channels = self.num_classes - 1
        self.seg_feat_channels = seg_feat_channels
        self.stacked_convs = stacked_convs
        self.kernel_out_channels = kernel_out_channels
        self.dcn_v2_stages = dcn_v2_stages
        self.segm_strides = segm_strides
        self.solov2_loss = solov2_loss
        self.mask_nms = mask_nms
        self.score_threshold = score_threshold
        self.mask_threshold = mask_threshold
        self.drop_block = drop_block
        self.conv_type = [ConvNorm, DeformConvNorm]
        if isinstance(mask_nms, dict):
            self.mask_nms = MaskMatrixNMS(**mask_nms)

    def _conv_pred(self, conv_feat, num_filters, is_test, name, name_feat=None):
        for i in range(self.stacked_convs):
            if i in self.dcn_v2_stages:
                conv_func = self.conv_type[1]
            else:
                conv_func = self.conv_type[0]
            conv_feat = conv_func(
                input=conv_feat,
                num_filters=self.seg_feat_channels,
                filter_size=3,
                stride=1,
                norm_type='gn',
                norm_groups=32,
                freeze_norm=False,
                act='relu',
                initializer=fluid.initializer.NormalInitializer(scale=0.01),
                norm_name='{}.{}.gn'.format(name, i),
                name='{}.{}'.format(name, i))
        if name_feat == 'bbox_head.solo_cate':
            bias_init = float(-np.log((1 - 0.01) / 0.01))
            bias_attr = ParamAttr(
                name="{}.bias".format(name_feat),
                initializer=fluid.initializer.Constant(value=bias_init))
        else:
            bias_attr = ParamAttr(name="{}.bias".format(name_feat))

        if self.drop_block:
            conv_feat = DropBlock(
                conv_feat, block_size=3, keep_prob=0.9, is_test=is_test)

        conv_feat = fluid.layers.conv2d(
            input=conv_feat,
            num_filters=num_filters,
            filter_size=3,
            stride=1,
            padding=1,
            param_attr=ParamAttr(
                name="{}.weight".format(name_feat),
                initializer=fluid.initializer.NormalInitializer(scale=0.01)),
            bias_attr=bias_attr,
            name=name + '_feat_')
        return conv_feat

    def _points_nms(self, heat, kernel=2):
        hmax = fluid.layers.pool2d(
            input=heat, pool_size=kernel, pool_type='max', pool_padding=1)
137 138 139
        keep = fluid.layers.cast(
            paddle.equal(hmax[:, :, :-1, :-1], heat), 'float32')
        return paddle.multiply(heat, keep)
G
Guanghua Yu 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371

    def _split_feats(self, feats):
        return (paddle.nn.functional.interpolate(
            feats[0],
            scale_factor=0.5,
            align_corners=False,
            align_mode=0,
            mode='bilinear'), feats[1], feats[2], feats[3],
                paddle.nn.functional.interpolate(
                    feats[4],
                    size=fluid.layers.shape(feats[3])[-2:],
                    mode='bilinear',
                    align_corners=False,
                    align_mode=0))

    def get_outputs(self, input, is_eval=False):
        """
        Get SOLOv2 head output

        Args:
            input (list): List of Variables, output of backbone or neck stages
            is_eval (bool): whether in train or test mode
        Returns:
            cate_pred_list (list): Variables of each category branch layer
            kernel_pred_list (list): Variables of each kernel branch layer
        """
        feats = self._split_feats(input)
        cate_pred_list = []
        kernel_pred_list = []
        for idx in range(len(self.seg_num_grids)):
            cate_pred, kernel_pred = self._get_output_single(
                feats[idx], idx, is_eval=is_eval)
            cate_pred_list.append(cate_pred)
            kernel_pred_list.append(kernel_pred)

        return cate_pred_list, kernel_pred_list

    def _get_output_single(self, input, idx, is_eval=False):
        ins_kernel_feat = input
        # CoordConv
        x_range = paddle.linspace(
            -1, 1, fluid.layers.shape(ins_kernel_feat)[-1], dtype='float32')
        y_range = paddle.linspace(
            -1, 1, fluid.layers.shape(ins_kernel_feat)[-2], dtype='float32')
        y, x = paddle.tensor.meshgrid([y_range, x_range])
        x = fluid.layers.unsqueeze(x, [0, 1])
        y = fluid.layers.unsqueeze(y, [0, 1])
        y = fluid.layers.expand(
            y, expand_times=[fluid.layers.shape(ins_kernel_feat)[0], 1, 1, 1])
        x = fluid.layers.expand(
            x, expand_times=[fluid.layers.shape(ins_kernel_feat)[0], 1, 1, 1])
        coord_feat = fluid.layers.concat([x, y], axis=1)
        ins_kernel_feat = fluid.layers.concat(
            [ins_kernel_feat, coord_feat], axis=1)

        # kernel branch
        kernel_feat = ins_kernel_feat
        seg_num_grid = self.seg_num_grids[idx]
        kernel_feat = paddle.nn.functional.interpolate(
            kernel_feat,
            size=[seg_num_grid, seg_num_grid],
            mode='bilinear',
            align_corners=False,
            align_mode=0)
        cate_feat = kernel_feat[:, :-2, :, :]

        kernel_pred = self._conv_pred(
            kernel_feat,
            self.kernel_out_channels,
            is_eval,
            name='bbox_head.kernel_convs',
            name_feat='bbox_head.solo_kernel')

        # cate branch
        cate_pred = self._conv_pred(
            cate_feat,
            self.cate_out_channels,
            is_eval,
            name='bbox_head.cate_convs',
            name_feat='bbox_head.solo_cate')

        if is_eval:
            cate_pred = self._points_nms(
                fluid.layers.sigmoid(cate_pred), kernel=2)
            cate_pred = fluid.layers.transpose(cate_pred, [0, 2, 3, 1])
        return cate_pred, kernel_pred

    def get_loss(self, cate_preds, kernel_preds, ins_pred, ins_labels,
                 cate_labels, grid_order_list, fg_num):
        """
        Get loss of network of SOLOv2.

        Args:
            cate_preds (list): Variable list of categroy branch output.
            kernel_preds (list): Variable list of kernel branch output.
            ins_pred (list): Variable list of instance branch output.
            ins_labels (list): List of instance labels pre batch.
            cate_labels (list): List of categroy labels pre batch.
            grid_order_list (list): List of index in pre grid.
            fg_num (int): Number of positive samples in a mini-batch.
        Returns:
            loss_ins (Variable): The instance loss Variable of SOLOv2 network.
            loss_cate (Variable): The category loss Variable of SOLOv2 network.
        """
        new_kernel_preds = []
        pad_length_list = []
        for kernel_preds_level, grid_orders_level in zip(kernel_preds,
                                                         grid_order_list):
            reshape_pred = fluid.layers.reshape(
                kernel_preds_level,
                shape=(fluid.layers.shape(kernel_preds_level)[0],
                       fluid.layers.shape(kernel_preds_level)[1], -1))
            reshape_pred = fluid.layers.transpose(reshape_pred, [0, 2, 1])
            reshape_pred = fluid.layers.reshape(
                reshape_pred, shape=(-1, fluid.layers.shape(reshape_pred)[2]))
            gathered_pred = fluid.layers.gather(
                reshape_pred, index=grid_orders_level)
            gathered_pred = fluid.layers.lod_reset(gathered_pred,
                                                   grid_orders_level)
            pad_value = fluid.layers.assign(input=np.array(
                [0.0], dtype=np.float32))
            pad_pred, pad_length = fluid.layers.sequence_pad(
                gathered_pred, pad_value=pad_value)
            new_kernel_preds.append(pad_pred)
            pad_length_list.append(pad_length)

        # generate masks
        ins_pred_list = []
        for kernel_pred, pad_length in zip(new_kernel_preds, pad_length_list):
            cur_ins_pred = ins_pred
            cur_ins_pred = fluid.layers.reshape(
                cur_ins_pred,
                shape=(fluid.layers.shape(cur_ins_pred)[0],
                       fluid.layers.shape(cur_ins_pred)[1], -1))
            ins_pred_conv = paddle.matmul(kernel_pred, cur_ins_pred)
            cur_ins_pred = fluid.layers.reshape(
                ins_pred_conv,
                shape=(fluid.layers.shape(ins_pred_conv)[0],
                       fluid.layers.shape(ins_pred_conv)[1],
                       fluid.layers.shape(ins_pred)[-2],
                       fluid.layers.shape(ins_pred)[-1]))
            cur_ins_pred = fluid.layers.sequence_unpad(cur_ins_pred, pad_length)
            ins_pred_list.append(cur_ins_pred)

        num_ins = fluid.layers.reduce_sum(fg_num)
        cate_preds = [
            fluid.layers.reshape(
                fluid.layers.transpose(cate_pred, [0, 2, 3, 1]),
                shape=(-1, self.cate_out_channels)) for cate_pred in cate_preds
        ]
        flatten_cate_preds = fluid.layers.concat(cate_preds)
        new_cate_labels = []
        cate_labels = fluid.layers.concat(cate_labels)
        cate_labels = fluid.layers.unsqueeze(cate_labels, 1)
        loss_ins, loss_cate = self.solov2_loss(
            ins_pred_list, ins_labels, flatten_cate_preds, cate_labels, num_ins)

        return {'loss_ins': loss_ins, 'loss_cate': loss_cate}

    def get_prediction(self, cate_preds, kernel_preds, seg_pred, im_info):
        """
        Get prediction result of SOLOv2 network

        Args:
            cate_preds (list): List of Variables, output of categroy branch.
            kernel_preds (list): List of Variables, output of kernel branch.
            seg_pred (list): List of Variables, output of mask head stages.
            im_info(Variables): [h, w, scale] for input images.
        Returns:
            seg_masks (Variable): The prediction segmentation.
            cate_labels (Variable): The prediction categroy label of each segmentation.
            seg_masks (Variable): The prediction score of each segmentation.
        """
        num_levels = len(cate_preds)
        featmap_size = fluid.layers.shape(seg_pred)[-2:]
        seg_masks_list = []
        cate_labels_list = []
        cate_scores_list = []
        cate_preds = [cate_pred * 1.0 for cate_pred in cate_preds]
        kernel_preds = [kernel_pred * 1.0 for kernel_pred in kernel_preds]
        # Currently only supports batch size == 1
        for idx in range(1):
            cate_pred_list = [
                fluid.layers.reshape(
                    cate_preds[i][idx], shape=(-1, self.cate_out_channels))
                for i in range(num_levels)
            ]
            seg_pred_list = seg_pred
            kernel_pred_list = [
                fluid.layers.reshape(
                    fluid.layers.transpose(kernel_preds[i][idx], [1, 2, 0]),
                    shape=(-1, self.kernel_out_channels))
                for i in range(num_levels)
            ]
            cate_pred_list = fluid.layers.concat(cate_pred_list, axis=0)
            kernel_pred_list = fluid.layers.concat(kernel_pred_list, axis=0)

            seg_masks, cate_labels, cate_scores = self.get_seg_single(
                cate_pred_list, seg_pred_list, kernel_pred_list, featmap_size,
                im_info[idx])
        return {
            "segm": seg_masks,
            'cate_label': cate_labels,
            'cate_score': cate_scores
        }

    def get_seg_single(self, cate_preds, seg_preds, kernel_preds, featmap_size,
                       im_info):

        im_scale = im_info[2]
        h = fluid.layers.cast(im_info[0], 'int32')
        w = fluid.layers.cast(im_info[1], 'int32')
        upsampled_size_out = (featmap_size[0] * 4, featmap_size[1] * 4)

        inds = fluid.layers.where(cate_preds > self.score_threshold)
        cate_preds = fluid.layers.reshape(cate_preds, shape=[-1])
        # Prevent empty and increase fake data
        ind_a = fluid.layers.cast(fluid.layers.shape(kernel_preds)[0], 'int64')
        ind_b = fluid.layers.zeros(shape=[1], dtype='int64')
        inds_end = fluid.layers.unsqueeze(
            fluid.layers.concat([ind_a, ind_b]), 0)
        inds = fluid.layers.concat([inds, inds_end])
        kernel_preds_end = fluid.layers.ones(
            shape=[1, self.kernel_out_channels], dtype='float32')
        kernel_preds = fluid.layers.concat([kernel_preds, kernel_preds_end])
        cate_preds = fluid.layers.concat(
            [cate_preds, fluid.layers.zeros(
                shape=[1], dtype='float32')])

        # cate_labels & kernel_preds
        cate_labels = inds[:, 1]
        kernel_preds = fluid.layers.gather(kernel_preds, index=inds[:, 0])
G
Guanghua Yu 已提交
372 373
        cate_score_idx = fluid.layers.elementwise_add(
            inds[:, 0] * self.cate_out_channels, cate_labels)
G
Guanghua Yu 已提交
374 375 376 377 378 379 380 381
        cate_scores = fluid.layers.gather(cate_preds, index=cate_score_idx)

        size_trans = np.power(self.seg_num_grids, 2)
        strides = []
        for _ind in range(len(self.segm_strides)):
            strides.append(
                fluid.layers.fill_constant(
                    shape=[int(size_trans[_ind])],
382
                    dtype="float32",
G
Guanghua Yu 已提交
383 384
                    value=self.segm_strides[_ind]))
        strides = fluid.layers.concat(strides)
385 386 387
        strides = fluid.layers.concat(
            [strides, fluid.layers.zeros(
                shape=[1], dtype='float32')])
G
Guanghua Yu 已提交
388 389 390 391 392 393 394 395 396 397
        strides = fluid.layers.gather(strides, index=inds[:, 0])

        # mask encoding.
        kernel_preds = fluid.layers.unsqueeze(kernel_preds, [2, 3])
        seg_preds = paddle.nn.functional.conv2d(seg_preds, kernel_preds)
        seg_preds = fluid.layers.sigmoid(fluid.layers.squeeze(seg_preds, [0]))
        seg_masks = seg_preds > self.mask_threshold
        seg_masks = fluid.layers.cast(seg_masks, 'float32')
        sum_masks = fluid.layers.reduce_sum(seg_masks, dim=[1, 2])

398
        keep = fluid.layers.where(paddle.greater_than(sum_masks, strides))
G
Guanghua Yu 已提交
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
        keep = fluid.layers.squeeze(keep, axes=[1])
        # Prevent empty and increase fake data
        keep_other = fluid.layers.concat([
            keep, fluid.layers.cast(
                fluid.layers.shape(sum_masks)[0] - 1, 'int64')
        ])
        keep_scores = fluid.layers.concat([
            keep, fluid.layers.cast(fluid.layers.shape(sum_masks)[0], 'int64')
        ])
        cate_scores_end = fluid.layers.zeros(shape=[1], dtype='float32')
        cate_scores = fluid.layers.concat([cate_scores, cate_scores_end])

        seg_masks = fluid.layers.gather(seg_masks, index=keep_other)
        seg_preds = fluid.layers.gather(seg_preds, index=keep_other)
        sum_masks = fluid.layers.gather(sum_masks, index=keep_other)
        cate_labels = fluid.layers.gather(cate_labels, index=keep_other)
        cate_scores = fluid.layers.gather(cate_scores, index=keep_scores)

        # mask scoring.
418 419 420 421
        seg_mul = fluid.layers.cast(
            paddle.multiply(seg_preds, seg_masks), 'float32')
        seg_scores = paddle.divide(paddle.sum(seg_mul, axis=[1, 2]), sum_masks)
        cate_scores = paddle.multiply(cate_scores, seg_scores)
G
Guanghua Yu 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445

        # Matrix NMS
        seg_preds, cate_scores, cate_labels = self.mask_nms(
            seg_preds, seg_masks, cate_labels, cate_scores, sum_masks=sum_masks)

        ori_shape = im_info[:2] / im_scale + 0.5
        ori_shape = fluid.layers.cast(ori_shape, 'int32')
        seg_preds = paddle.nn.functional.interpolate(
            fluid.layers.unsqueeze(seg_preds, 0),
            size=upsampled_size_out,
            mode='bilinear',
            align_corners=False,
            align_mode=0)[:, :, :h, :w]
        seg_masks = fluid.layers.squeeze(
            paddle.nn.functional.interpolate(
                seg_preds,
                size=ori_shape[:2],
                mode='bilinear',
                align_corners=False,
                align_mode=0),
            axes=[0])
        # TODO: convert uint8
        seg_masks = fluid.layers.cast(seg_masks > self.mask_threshold, 'int32')
        return seg_masks, cate_labels, cate_scores