checkpoint.py 9.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

20
import errno
21 22
import os
import shutil
23
import tempfile
24
import time
25
import numpy as np
26
import re
27 28 29 30 31 32 33
import paddle.fluid as fluid

from .download import get_weights_path

import logging
logger = logging.getLogger(__name__)

W
wangguanzhong 已提交
34 35 36
__all__ = [
    'load_checkpoint',
    'load_and_fusebn',
37
    'load_params',
W
wangguanzhong 已提交
38 39
    'save',
]
40 41 42 43 44 45 46 47 48 49 50


def is_url(path):
    """
    Whether path is URL.
    Args:
        path (string): URL string or not.
    """
    return path.startswith('http://') or path.startswith('https://')


51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
def _get_weight_path(path):
    env = os.environ
    if 'PADDLE_TRAINERS_NUM' in env and 'PADDLE_TRAINER_ID' in env:
        trainer_id = int(env['PADDLE_TRAINER_ID'])
        num_trainers = int(env['PADDLE_TRAINERS_NUM'])
        if num_trainers <= 1:
            path = get_weights_path(path)
        else:
            from ppdet.utils.download import map_path, WEIGHTS_HOME
            weight_path = map_path(path, WEIGHTS_HOME)
            lock_path = weight_path + '.lock'
            if not os.path.exists(weight_path):
                try:
                    os.makedirs(os.path.dirname(weight_path))
                except OSError as e:
                    if e.errno != errno.EEXIST:
                        raise
                with open(lock_path, 'w'):  # touch    
                    os.utime(lock_path, None)
                if trainer_id == 0:
                    get_weights_path(path)
                    os.remove(lock_path)
                else:
                    while os.path.exists(lock_path):
                        time.sleep(1)
            path = weight_path
    else:
        path = get_weights_path(path)
    return path


82 83 84 85 86 87 88 89 90 91 92 93 94
def _load_state(path):
    if os.path.exists(path + '.pdopt'):
        # XXX another hack to ignore the optimizer state
        tmp = tempfile.mkdtemp()
        dst = os.path.join(tmp, os.path.basename(os.path.normpath(path)))
        shutil.copy(path + '.pdparams', dst + '.pdparams')
        state = fluid.io.load_program_state(dst)
        shutil.rmtree(tmp)
    else:
        state = fluid.io.load_program_state(path)
    return state


K
Kaipeng Deng 已提交
95 96 97 98 99 100 101
def _strip_postfix(path):
    path, ext = os.path.splitext(path)
    assert ext in ['', '.pdparams', '.pdopt', '.pdmodel'], \
            "Unknown postfix {} from weights".format(ext)
    return path


102
def load_params(exe, prog, path, ignore_params=[]):
103 104 105 106 107 108
    """
    Load model from the given path.
    Args:
        exe (fluid.Executor): The fluid.Executor object.
        prog (fluid.Program): load weight to which Program object.
        path (string): URL string or loca model path.
109
        ignore_params (list): ignore variable to load when finetuning.
110
            It can be specified by finetune_exclude_pretrained_params 
111
            and the usage can refer to docs/advanced_tutorials/TRANSFER_LEARNING.md
112
    """
113

114
    if is_url(path):
115
        path = _get_weight_path(path)
K
Kaipeng Deng 已提交
116 117

    path = _strip_postfix(path)
118
    if not (os.path.isdir(path) or os.path.exists(path + '.pdparams')):
119 120
        raise ValueError("Model pretrain path {} does not "
                         "exists.".format(path))
121

122
    logger.info('Loading parameters from {}...'.format(path))
123

124 125 126 127 128 129 130 131 132 133 134 135 136 137
    ignore_set = set()
    state = _load_state(path)

    # ignore the parameter which mismatch the shape 
    # between the model and pretrain weight.
    all_var_shape = {}
    for block in prog.blocks:
        for param in block.all_parameters():
            all_var_shape[param.name] = param.shape
    ignore_set.update([
        name for name, shape in all_var_shape.items()
        if name in state and shape != state[name].shape
    ])

138 139 140 141 142
    if ignore_params:
        all_var_names = [var.name for var in prog.list_vars()]
        ignore_list = filter(
            lambda var: any([re.match(name, var) for name in ignore_params]),
            all_var_names)
143
        ignore_set.update(list(ignore_list))
144

145 146
    if len(ignore_set) > 0:
        for k in ignore_set:
147
            if k in state:
148
                logger.warning('variable {} not used'.format(k))
149 150
                del state[k]
    fluid.io.set_program_state(prog, state)
151 152 153 154 155 156 157 158 159 160 161


def load_checkpoint(exe, prog, path):
    """
    Load model from the given path.
    Args:
        exe (fluid.Executor): The fluid.Executor object.
        prog (fluid.Program): load weight to which Program object.
        path (string): URL string or loca model path.
    """
    if is_url(path):
162
        path = _get_weight_path(path)
K
Kaipeng Deng 已提交
163 164

    path = _strip_postfix(path)
165 166
    if not (os.path.isdir(path) or os.path.exists(path + '.pdparams')):
        raise ValueError("Model pretrain path {} does not "
167
                         "exists.".format(path))
168
    fluid.load(prog, path, executor=exe)
169 170


Q
qingqing01 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
def global_step(scope=None):
    """
    Load global step in scope.
    Args:
        scope (fluid.Scope): load global step from which scope. If None,
            from default global_scope().

    Returns:
        global step: int.
    """
    if scope is None:
        scope = fluid.global_scope()
    v = scope.find_var('@LR_DECAY_COUNTER@')
    step = np.array(v.get_tensor())[0] if v else 0
    return step


188 189 190 191 192 193 194 195 196 197 198
def save(exe, prog, path):
    """
    Load model from the given path.
    Args:
        exe (fluid.Executor): The fluid.Executor object.
        prog (fluid.Program): save weight from which Program object.
        path (string): the path to save model.
    """
    if os.path.isdir(path):
        shutil.rmtree(path)
    logger.info('Save model to {}.'.format(path))
199
    fluid.save(prog, path)
200 201 202 203 204 205 206 207 208 209 210


def load_and_fusebn(exe, prog, path):
    """
    Fuse params of batch norm to scale and bias.

    Args:
        exe (fluid.Executor): The fluid.Executor object.
        prog (fluid.Program): save weight from which Program object.
        path (string): the path to save model.
    """
Q
qingqing01 已提交
211 212
    logger.info('Load model and fuse batch norm if have from {}...'.format(
        path))
213

214
    if is_url(path):
215
        path = _get_weight_path(path)
216

217 218 219
    if not os.path.exists(path):
        raise ValueError("Model path {} does not exists.".format(path))

220 221 222 223 224 225 226 227 228 229
    # Since the program uses affine-channel, there is no running mean and var
    # in the program, here append running mean and var.
    # NOTE, the params of batch norm should be like:
    #  x_scale
    #  x_offset
    #  x_mean
    #  x_variance
    #  x is any prefix
    mean_variances = set()
    bn_vars = []
230
    state = _load_state(path)
231 232 233 234

    def check_mean_and_bias(prefix):
        m = prefix + 'mean'
        v = prefix + 'variance'
235
        return v in state and m in state
236 237

    has_mean_bias = True
238

239
    with fluid.program_guard(prog, fluid.Program()):
240 241
        for block in prog.blocks:
            ops = list(block.ops)
242
            if not has_mean_bias:
243 244 245 246 247 248 249 250 251
                break
            for op in ops:
                if op.type == 'affine_channel':
                    # remove 'scale' as prefix
                    scale_name = op.input('Scale')[0]  # _scale
                    bias_name = op.input('Bias')[0]  # _offset
                    prefix = scale_name[:-5]
                    mean_name = prefix + 'mean'
                    variance_name = prefix + 'variance'
252 253
                    if not check_mean_and_bias(prefix):
                        has_mean_bias = False
254 255 256
                        break

                    bias = block.var(bias_name)
257

258
                    mean_vb = block.create_var(
259 260 261
                        name=mean_name,
                        type=bias.type,
                        shape=bias.shape,
262 263
                        dtype=bias.dtype)
                    variance_vb = block.create_var(
264 265 266
                        name=variance_name,
                        type=bias.type,
                        shape=bias.shape,
267
                        dtype=bias.dtype)
268

269 270 271 272 273 274
                    mean_variances.add(mean_vb)
                    mean_variances.add(variance_vb)

                    bn_vars.append(
                        [scale_name, bias_name, mean_name, variance_name])

275
    if not has_mean_bias:
276
        fluid.io.set_program_state(prog, state)
Q
qingqing01 已提交
277 278 279 280
        logger.warning(
            "There is no paramters of batch norm in model {}. "
            "Skip to fuse batch norm. And load paramters done.".format(path))
        return
281

282
    fluid.load(prog, path, exe)
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
    eps = 1e-5
    for names in bn_vars:
        scale_name, bias_name, mean_name, var_name = names

        scale = fluid.global_scope().find_var(scale_name).get_tensor()
        bias = fluid.global_scope().find_var(bias_name).get_tensor()
        mean = fluid.global_scope().find_var(mean_name).get_tensor()
        var = fluid.global_scope().find_var(var_name).get_tensor()

        scale_arr = np.array(scale)
        bias_arr = np.array(bias)
        mean_arr = np.array(mean)
        var_arr = np.array(var)

        bn_std = np.sqrt(np.add(var_arr, eps))
        new_scale = np.float32(np.divide(scale_arr, bn_std))
        new_bias = bias_arr - mean_arr * new_scale

        # fuse to scale and bias in affine_channel
        scale.set(new_scale, exe.place)
        bias.set(new_bias, exe.place)