checkpoint.py 9.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

20
import errno
21 22
import os
import shutil
23
import tempfile
24
import time
25
import numpy as np
26
import re
27 28 29 30 31 32 33
import paddle.fluid as fluid

from .download import get_weights_path

import logging
logger = logging.getLogger(__name__)

W
wangguanzhong 已提交
34 35 36
__all__ = [
    'load_checkpoint',
    'load_and_fusebn',
37
    'load_params',
W
wangguanzhong 已提交
38 39
    'save',
]
40 41 42 43 44 45 46 47 48 49 50


def is_url(path):
    """
    Whether path is URL.
    Args:
        path (string): URL string or not.
    """
    return path.startswith('http://') or path.startswith('https://')


51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
def _get_weight_path(path):
    env = os.environ
    if 'PADDLE_TRAINERS_NUM' in env and 'PADDLE_TRAINER_ID' in env:
        trainer_id = int(env['PADDLE_TRAINER_ID'])
        num_trainers = int(env['PADDLE_TRAINERS_NUM'])
        if num_trainers <= 1:
            path = get_weights_path(path)
        else:
            from ppdet.utils.download import map_path, WEIGHTS_HOME
            weight_path = map_path(path, WEIGHTS_HOME)
            lock_path = weight_path + '.lock'
            if not os.path.exists(weight_path):
                try:
                    os.makedirs(os.path.dirname(weight_path))
                except OSError as e:
                    if e.errno != errno.EEXIST:
                        raise
                with open(lock_path, 'w'):  # touch    
                    os.utime(lock_path, None)
                if trainer_id == 0:
                    get_weights_path(path)
                    os.remove(lock_path)
                else:
                    while os.path.exists(lock_path):
                        time.sleep(1)
            path = weight_path
    else:
        path = get_weights_path(path)
    return path


82 83 84 85 86 87 88 89 90 91 92 93 94
def _load_state(path):
    if os.path.exists(path + '.pdopt'):
        # XXX another hack to ignore the optimizer state
        tmp = tempfile.mkdtemp()
        dst = os.path.join(tmp, os.path.basename(os.path.normpath(path)))
        shutil.copy(path + '.pdparams', dst + '.pdparams')
        state = fluid.io.load_program_state(dst)
        shutil.rmtree(tmp)
    else:
        state = fluid.io.load_program_state(path)
    return state


95
def load_params(exe, prog, path, ignore_params=[]):
96 97 98 99 100 101
    """
    Load model from the given path.
    Args:
        exe (fluid.Executor): The fluid.Executor object.
        prog (fluid.Program): load weight to which Program object.
        path (string): URL string or loca model path.
102
        ignore_params (bool): ignore variable to load when finetuning.
103 104
            It can be specified by finetune_exclude_pretrained_params 
            and the usage can refer to docs/TRANSFER_LEARNING.md
105
    """
106

107
    if is_url(path):
108
        path = _get_weight_path(path)
109
    if not (os.path.isdir(path) or os.path.exists(path + '.pdparams')):
110 111
        raise ValueError("Model pretrain path {} does not "
                         "exists.".format(path))
112

113
    logger.info('Loading parameters from {}...'.format(path))
114

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
    ignore_list = None
    if ignore_params:
        all_var_names = [var.name for var in prog.list_vars()]
        ignore_list = filter(
            lambda var: any([re.match(name, var) for name in ignore_params]),
            all_var_names)
        ignore_list = list(ignore_list)

    if os.path.isdir(path):
        if not ignore_list:
            fluid.load(prog, path, executor=exe)
            return

        # XXX this is hackish, but seems to be the least contrived way...
        tmp = tempfile.mkdtemp()
        dst = os.path.join(tmp, os.path.basename(os.path.normpath(path)))
        shutil.copytree(path, dst, ignore=shutil.ignore_patterns(*ignore_list))
        fluid.load(prog, dst, executor=exe)
        shutil.rmtree(tmp)
        return

    state = _load_state(path)

    if ignore_list:
        for k in ignore_list:
            if k in state:
                del state[k]
    fluid.io.set_program_state(prog, state)
143 144 145 146 147 148 149 150 151 152 153


def load_checkpoint(exe, prog, path):
    """
    Load model from the given path.
    Args:
        exe (fluid.Executor): The fluid.Executor object.
        prog (fluid.Program): load weight to which Program object.
        path (string): URL string or loca model path.
    """
    if is_url(path):
154
        path = _get_weight_path(path)
155 156
    if not (os.path.isdir(path) or os.path.exists(path + '.pdparams')):
        raise ValueError("Model pretrain path {} does not "
157
                         "exists.".format(path))
158
    fluid.load(prog, path, executor=exe)
159 160


Q
qingqing01 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
def global_step(scope=None):
    """
    Load global step in scope.
    Args:
        scope (fluid.Scope): load global step from which scope. If None,
            from default global_scope().

    Returns:
        global step: int.
    """
    if scope is None:
        scope = fluid.global_scope()
    v = scope.find_var('@LR_DECAY_COUNTER@')
    step = np.array(v.get_tensor())[0] if v else 0
    return step


178 179 180 181 182 183 184 185 186 187 188
def save(exe, prog, path):
    """
    Load model from the given path.
    Args:
        exe (fluid.Executor): The fluid.Executor object.
        prog (fluid.Program): save weight from which Program object.
        path (string): the path to save model.
    """
    if os.path.isdir(path):
        shutil.rmtree(path)
    logger.info('Save model to {}.'.format(path))
189
    fluid.save(prog, path)
190 191 192 193 194 195 196 197 198 199 200


def load_and_fusebn(exe, prog, path):
    """
    Fuse params of batch norm to scale and bias.

    Args:
        exe (fluid.Executor): The fluid.Executor object.
        prog (fluid.Program): save weight from which Program object.
        path (string): the path to save model.
    """
Q
qingqing01 已提交
201 202
    logger.info('Load model and fuse batch norm if have from {}...'.format(
        path))
203

204
    if is_url(path):
205
        path = _get_weight_path(path)
206

207 208 209
    if not os.path.exists(path):
        raise ValueError("Model path {} does not exists.".format(path))

210 211 212 213 214 215 216 217 218 219 220
    # Since the program uses affine-channel, there is no running mean and var
    # in the program, here append running mean and var.
    # NOTE, the params of batch norm should be like:
    #  x_scale
    #  x_offset
    #  x_mean
    #  x_variance
    #  x is any prefix
    mean_variances = set()
    bn_vars = []

221 222 223 224 225 226 227 228 229 230 231 232 233 234
    state = None
    if os.path.exists(path + '.pdparams'):
        state = _load_state(path)

    def check_mean_and_bias(prefix):
        m = prefix + 'mean'
        v = prefix + 'variance'
        if state:
            return v in state and m in state
        else:
            return (os.path.exists(os.path.join(path, m)) and
                    os.path.exists(os.path.join(path, v)))

    has_mean_bias = True
235

236
    with fluid.program_guard(prog, fluid.Program()):
237 238
        for block in prog.blocks:
            ops = list(block.ops)
239
            if not has_mean_bias:
240 241 242 243 244 245 246 247 248
                break
            for op in ops:
                if op.type == 'affine_channel':
                    # remove 'scale' as prefix
                    scale_name = op.input('Scale')[0]  # _scale
                    bias_name = op.input('Bias')[0]  # _offset
                    prefix = scale_name[:-5]
                    mean_name = prefix + 'mean'
                    variance_name = prefix + 'variance'
249 250
                    if not check_mean_and_bias(prefix):
                        has_mean_bias = False
251 252 253
                        break

                    bias = block.var(bias_name)
254

255
                    mean_vb = block.create_var(
256 257 258
                        name=mean_name,
                        type=bias.type,
                        shape=bias.shape,
259 260
                        dtype=bias.dtype)
                    variance_vb = block.create_var(
261 262 263
                        name=variance_name,
                        type=bias.type,
                        shape=bias.shape,
264
                        dtype=bias.dtype)
265

266 267 268 269 270 271
                    mean_variances.add(mean_vb)
                    mean_variances.add(variance_vb)

                    bn_vars.append(
                        [scale_name, bias_name, mean_name, variance_name])

272 273 274 275 276 277
    if state:
        fluid.io.set_program_state(prog, state)
    else:
        load_params(exe, prog, path)

    if not has_mean_bias:
Q
qingqing01 已提交
278 279 280 281
        logger.warning(
            "There is no paramters of batch norm in model {}. "
            "Skip to fuse batch norm. And load paramters done.".format(path))
        return
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303

    eps = 1e-5
    for names in bn_vars:
        scale_name, bias_name, mean_name, var_name = names

        scale = fluid.global_scope().find_var(scale_name).get_tensor()
        bias = fluid.global_scope().find_var(bias_name).get_tensor()
        mean = fluid.global_scope().find_var(mean_name).get_tensor()
        var = fluid.global_scope().find_var(var_name).get_tensor()

        scale_arr = np.array(scale)
        bias_arr = np.array(bias)
        mean_arr = np.array(mean)
        var_arr = np.array(var)

        bn_std = np.sqrt(np.add(var_arr, eps))
        new_scale = np.float32(np.divide(scale_arr, bn_std))
        new_bias = bias_arr - mean_arr * new_scale

        # fuse to scale and bias in affine_channel
        scale.set(new_scale, exe.place)
        bias.set(new_bias, exe.place)