auc_op.h 5.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
T
typhoonzero 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16 17
#include <string>
#include <vector>
Y
Yi Wang 已提交
18 19
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
T
typhoonzero 已提交
20 21 22 23 24 25

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

T
auc_op  
typhoonzero 已提交
26 27 28 29
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

Q
QI JUN 已提交
30
template <typename DeviceContext, typename T>
T
typhoonzero 已提交
31
class AucKernel : public framework::OpKernel<T> {
T
typhoonzero 已提交
32 33
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
Q
Qiao Longfei 已提交
34
    auto* predict = ctx.Input<Tensor>("Predict");
T
typhoonzero 已提交
35 36
    auto* label = ctx.Input<Tensor>("Label");
    auto* auc = ctx.Output<Tensor>("AUC");
W
Wu Yi 已提交
37 38 39 40 41 42
    // Only use output var for now, make sure it's persistable and
    // not cleaned up for each batch.
    auto* true_positive = ctx.Output<Tensor>("TPOut");
    auto* false_positive = ctx.Output<Tensor>("FPOut");
    auto* true_negative = ctx.Output<Tensor>("TNOut");
    auto* false_negative = ctx.Output<Tensor>("FNOut");
T
typhoonzero 已提交
43

Q
Qiao Longfei 已提交
44
    auto* auc_data = auc->mutable_data<double>(ctx.GetPlace());
T
typhoonzero 已提交
45 46 47

    std::string curve = ctx.Attr<std::string>("curve");
    int num_thresholds = ctx.Attr<int>("num_thresholds");
Q
Qiao Longfei 已提交
48
    std::vector<double> thresholds_list;
T
typhoonzero 已提交
49 50
    thresholds_list.reserve(num_thresholds);
    for (int i = 1; i < num_thresholds - 1; i++) {
Q
Qiao Longfei 已提交
51
      thresholds_list[i] = static_cast<double>(i) / (num_thresholds - 1);
T
typhoonzero 已提交
52
    }
Q
Qiao Longfei 已提交
53
    const double kEpsilon = 1e-7;
T
typhoonzero 已提交
54 55 56
    thresholds_list[0] = 0.0f - kEpsilon;
    thresholds_list[num_thresholds - 1] = 1.0f + kEpsilon;

Q
Qiao Longfei 已提交
57 58
    size_t batch_size = predict->dims()[0];
    size_t inference_width = predict->dims()[1];
T
auc_op  
typhoonzero 已提交
59

Q
Qiao Longfei 已提交
60 61
    const T* inference_data = predict->data<T>();
    const auto* label_data = label->data<int64_t>();
T
typhoonzero 已提交
62

63 64 65 66 67 68 69 70 71 72 73 74 75 76
    // check if states are inited.
    auto* tp_in = ctx.Input<Tensor>("TP");
    auto* fp_in = ctx.Input<Tensor>("FP");
    auto* tn_in = ctx.Input<Tensor>("TN");
    auto* fn_in = ctx.Input<Tensor>("FN");
    PADDLE_ENFORCE(tp_in->IsInitialized(), "true_positive is not inited!");
    PADDLE_ENFORCE(fp_in->IsInitialized(), "false_negative is not inited!");
    PADDLE_ENFORCE(tn_in->IsInitialized(), "true_negative is not inited!");
    PADDLE_ENFORCE(fn_in->IsInitialized(), "false_positive is not inited!");
    PADDLE_ENFORCE_EQ(tp_in->numel(), num_thresholds, "");
    PADDLE_ENFORCE_EQ(fp_in->numel(), num_thresholds, "");
    PADDLE_ENFORCE_EQ(tn_in->numel(), num_thresholds, "");
    PADDLE_ENFORCE_EQ(fn_in->numel(), num_thresholds, "");

W
Wu Yi 已提交
77 78 79 80
    auto* tp_data = true_positive->mutable_data<int64_t>(ctx.GetPlace());
    auto* fn_data = false_negative->mutable_data<int64_t>(ctx.GetPlace());
    auto* tn_data = true_negative->mutable_data<int64_t>(ctx.GetPlace());
    auto* fp_data = false_positive->mutable_data<int64_t>(ctx.GetPlace());
T
typhoonzero 已提交
81

T
typhoonzero 已提交
82
    for (int idx_thresh = 0; idx_thresh < num_thresholds; idx_thresh++) {
Q
Qiao Longfei 已提交
83
      // calculate TP, FN, TN, FP for current thresh
武毅 已提交
84 85
      int64_t tp = 0, fn = 0, tn = 0, fp = 0;
      for (size_t i = 0; i < batch_size; i++) {
Q
Qiao Longfei 已提交
86
        // NOTE: label_data used as bool, labels > 0 will be treated as true.
武毅 已提交
87
        if (label_data[i]) {
Q
Qiao Longfei 已提交
88
          if (inference_data[i * inference_width + 1] >=
武毅 已提交
89
              (thresholds_list[idx_thresh])) {
T
auc_op  
typhoonzero 已提交
90 91
            tp++;
          } else {
T
typhoonzero 已提交
92
            fn++;
T
auc_op  
typhoonzero 已提交
93 94
          }
        } else {
Q
Qiao Longfei 已提交
95
          if (inference_data[i * inference_width + 1] >=
武毅 已提交
96
              (thresholds_list[idx_thresh])) {
T
auc_op  
typhoonzero 已提交
97
            fp++;
T
typhoonzero 已提交
98
          } else {
T
typhoonzero 已提交
99
            tn++;
T
typhoonzero 已提交
100 101 102 103
          }
        }
      }
      // store rates
W
Wu Yi 已提交
104 105 106 107
      tp_data[idx_thresh] += tp;
      fn_data[idx_thresh] += fn;
      tn_data[idx_thresh] += tn;
      fp_data[idx_thresh] += fp;
T
typhoonzero 已提交
108 109
    }
    // epsilon to avoid divide by zero.
Q
Qiao Longfei 已提交
110
    double epsilon = 1e-6;
T
typhoonzero 已提交
111 112 113 114 115
    // Riemann sum to caculate auc.
    Tensor tp_rate, fp_rate, rec_rate;
    tp_rate.Resize({num_thresholds});
    fp_rate.Resize({num_thresholds});
    rec_rate.Resize({num_thresholds});
Q
Qiao Longfei 已提交
116 117 118
    auto* tp_rate_data = tp_rate.mutable_data<double>(ctx.GetPlace());
    auto* fp_rate_data = fp_rate.mutable_data<double>(ctx.GetPlace());
    auto* rec_rate_data = rec_rate.mutable_data<double>(ctx.GetPlace());
T
typhoonzero 已提交
119
    for (int i = 0; i < num_thresholds; i++) {
Q
Qiao Longfei 已提交
120
      tp_rate_data[i] = (static_cast<double>(tp_data[i]) + epsilon) /
121 122
                        (tp_data[i] + fn_data[i] + epsilon);
      fp_rate_data[i] =
Q
Qiao Longfei 已提交
123 124
          static_cast<double>(fp_data[i]) / (fp_data[i] + tn_data[i] + epsilon);
      rec_rate_data[i] = (static_cast<double>(tp_data[i]) + epsilon) /
125
                         (tp_data[i] + fp_data[i] + epsilon);
T
typhoonzero 已提交
126
    }
T
typhoonzero 已提交
127
    *auc_data = 0.0f;
T
typhoonzero 已提交
128
    if (curve == "ROC") {
T
typhoonzero 已提交
129 130 131
      for (int i = 0; i < num_thresholds - 1; i++) {
        auto dx = fp_rate_data[i] - fp_rate_data[i + 1];
        auto y = (tp_rate_data[i] + tp_rate_data[i + 1]) / 2.0f;
T
typhoonzero 已提交
132 133
        *auc_data = *auc_data + dx * y;
      }
T
update  
typhoonzero 已提交
134
    } else if (curve == "PR") {
T
typhoonzero 已提交
135 136 137 138 139 140 141 142 143 144 145
      for (int i = 1; i < num_thresholds; i++) {
        auto dx = tp_rate_data[i] - tp_rate_data[i - 1];
        auto y = (rec_rate_data[i] + rec_rate_data[i - 1]) / 2.0f;
        *auc_data = *auc_data + dx * y;
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle