pipeline.py 38.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import yaml
import glob
18
from collections import defaultdict
19 20 21 22 23 24

import cv2
import numpy as np
import math
import paddle
import sys
Z
zhiboniu 已提交
25
import copy
26
from collections import Sequence
Z
zhiboniu 已提交
27 28 29
from reid import ReID
from datacollector import DataCollector, Result
from mtmct import mtmct_process
30 31 32 33 34 35 36

# add deploy path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
sys.path.insert(0, parent_path)

from python.infer import Detector, DetectorPicoDet
from python.attr_infer import AttrDetector
J
JYChen 已提交
37 38
from python.keypoint_infer import KeyPointDetector
from python.keypoint_postprocess import translate_to_ori_images
J
JYChen 已提交
39

40
from python.video_action_infer import VideoActionRecognizer
J
JYChen 已提交
41 42
from python.action_infer import SkeletonActionRecognizer, DetActionRecognizer, ClsActionRecognizer
from python.action_utils import KeyPointBuff, ActionVisualHelper
J
JYChen 已提交
43

44
from pipe_utils import argsparser, print_arguments, merge_cfg, PipeTimer
J
JYChen 已提交
45
from pipe_utils import get_test_images, crop_image_with_det, crop_image_with_mot, parse_mot_res, parse_mot_keypoint
46
from python.preprocess import decode_image, ShortSizeScale
J
JYChen 已提交
47
from python.visualize import visualize_box_mask, visualize_attr, visualize_pose, visualize_action
48 49

from pptracking.python.mot_sde_infer import SDE_Detector
50 51
from pptracking.python.mot.visualize import plot_tracking_dict
from pptracking.python.mot.utils import flow_statistic
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76


class Pipeline(object):
    """
    Pipeline

    Args:
        cfg (dict): config of models in pipeline
        image_file (string|None): the path of image file, default as None
        image_dir (string|None): the path of image directory, if not None, 
            then all the images in directory will be predicted, default as None
        video_file (string|None): the path of video file, default as None
        camera_id (int): the device id of camera to predict, default as -1
        device (string): the device to predict, options are: CPU/GPU/XPU, 
            default as CPU
        run_mode (string): the mode of prediction, options are: 
            paddle/trt_fp32/trt_fp16, default as paddle
        trt_min_shape (int): min shape for dynamic shape in trt, default as 1
        trt_max_shape (int): max shape for dynamic shape in trt, default as 1280
        trt_opt_shape (int): opt shape for dynamic shape in trt, default as 640
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True. default as False
        cpu_threads (int): cpu threads, default as 1
        enable_mkldnn (bool): whether to open MKLDNN, default as False
        output_dir (string): The path of output, default as 'output'
77 78 79
        draw_center_traj (bool): Whether drawing the trajectory of center, default as False
        secs_interval (int): The seconds interval to count after tracking, default as 10
        do_entrance_counting(bool): Whether counting the numbers of identifiers entering 
80
            or getting out from the entrance, default as False, only support single class
81
            counting in MOT.
82 83 84 85 86 87 88
    """

    def __init__(self,
                 cfg,
                 image_file=None,
                 image_dir=None,
                 video_file=None,
Z
zhiboniu 已提交
89
                 video_dir=None,
90 91 92 93 94 95 96 97 98
                 camera_id=-1,
                 device='CPU',
                 run_mode='paddle',
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False,
99 100 101 102
                 output_dir='output',
                 draw_center_traj=False,
                 secs_interval=10,
                 do_entrance_counting=False):
103
        self.multi_camera = False
Z
zhiboniu 已提交
104 105
        reid_cfg = cfg.get('REID', False)
        self.enable_mtmct = reid_cfg['enable'] if reid_cfg else False
106
        self.is_video = False
Z
zhiboniu 已提交
107 108
        self.output_dir = output_dir
        self.vis_result = cfg['visual']
109
        self.input = self._parse_input(image_file, image_dir, video_file,
Z
zhiboniu 已提交
110
                                       video_dir, camera_id)
111
        if self.multi_camera:
112 113 114
            self.predictor = []
            for name in self.input:
                predictor_item = PipePredictor(
115 116 117 118 119 120 121 122 123 124
                    cfg,
                    is_video=True,
                    multi_camera=True,
                    device=device,
                    run_mode=run_mode,
                    trt_min_shape=trt_min_shape,
                    trt_max_shape=trt_max_shape,
                    trt_opt_shape=trt_opt_shape,
                    cpu_threads=cpu_threads,
                    enable_mkldnn=enable_mkldnn,
125 126 127 128
                    output_dir=output_dir)
                predictor_item.set_file_name(name)
                self.predictor.append(predictor_item)

129 130 131 132 133 134 135 136 137 138 139 140
        else:
            self.predictor = PipePredictor(
                cfg,
                self.is_video,
                device=device,
                run_mode=run_mode,
                trt_min_shape=trt_min_shape,
                trt_max_shape=trt_max_shape,
                trt_opt_shape=trt_opt_shape,
                trt_calib_mode=trt_calib_mode,
                cpu_threads=cpu_threads,
                enable_mkldnn=enable_mkldnn,
141 142 143 144
                output_dir=output_dir,
                draw_center_traj=draw_center_traj,
                secs_interval=secs_interval,
                do_entrance_counting=do_entrance_counting)
145 146
            if self.is_video:
                self.predictor.set_file_name(video_file)
147

148 149 150 151 152
        self.output_dir = output_dir
        self.draw_center_traj = draw_center_traj
        self.secs_interval = secs_interval
        self.do_entrance_counting = do_entrance_counting

Z
zhiboniu 已提交
153 154
    def _parse_input(self, image_file, image_dir, video_file, video_dir,
                     camera_id):
155 156 157 158 159 160 161 162 163

        # parse input as is_video and multi_camera

        if image_file is not None or image_dir is not None:
            input = get_test_images(image_dir, image_file)
            self.is_video = False
            self.multi_camera = False

        elif video_file is not None:
164
            assert os.path.exists(video_file), "video_file not exists."
Z
zhiboniu 已提交
165 166 167 168 169 170 171
            self.multi_camera = False
            input = video_file
            self.is_video = True

        elif video_dir is not None:
            videof = [os.path.join(video_dir, x) for x in os.listdir(video_dir)]
            if len(videof) > 1:
172
                self.multi_camera = True
Z
zhiboniu 已提交
173 174
                videof.sort()
                input = videof
175
            else:
Z
zhiboniu 已提交
176
                input = videof[0]
177 178 179
            self.is_video = True

        elif camera_id != -1:
Z
zhiboniu 已提交
180 181
            self.multi_camera = False
            input = camera_id
182 183 184 185
            self.is_video = True

        else:
            raise ValueError(
186
                "Illegal Input, please set one of ['video_file', 'camera_id', 'image_file', 'image_dir']"
187 188 189 190 191 192 193 194 195
            )

        return input

    def run(self):
        if self.multi_camera:
            multi_res = []
            for predictor, input in zip(self.predictor, self.input):
                predictor.run(input)
Z
zhiboniu 已提交
196 197
                collector_data = predictor.get_result()
                multi_res.append(collector_data)
198 199 200 201 202 203
            if self.enable_mtmct:
                mtmct_process(
                    multi_res,
                    self.input,
                    mtmct_vis=self.vis_result,
                    output_dir=self.output_dir)
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221

        else:
            self.predictor.run(self.input)


class PipePredictor(object):
    """
    Predictor in single camera
    
    The pipeline for image input: 

        1. Detection
        2. Detection -> Attribute

    The pipeline for video input: 

        1. Tracking
        2. Tracking -> Attribute
Z
zhiboniu 已提交
222
        3. Tracking -> KeyPoint -> SkeletonAction Recognition
223
        4. VideoAction Recognition
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242

    Args:
        cfg (dict): config of models in pipeline
        is_video (bool): whether the input is video, default as False
        multi_camera (bool): whether to use multi camera in pipeline, 
            default as False
        camera_id (int): the device id of camera to predict, default as -1
        device (string): the device to predict, options are: CPU/GPU/XPU, 
            default as CPU
        run_mode (string): the mode of prediction, options are: 
            paddle/trt_fp32/trt_fp16, default as paddle
        trt_min_shape (int): min shape for dynamic shape in trt, default as 1
        trt_max_shape (int): max shape for dynamic shape in trt, default as 1280
        trt_opt_shape (int): opt shape for dynamic shape in trt, default as 640
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True. default as False
        cpu_threads (int): cpu threads, default as 1
        enable_mkldnn (bool): whether to open MKLDNN, default as False
        output_dir (string): The path of output, default as 'output'
243 244 245
        draw_center_traj (bool): Whether drawing the trajectory of center, default as False
        secs_interval (int): The seconds interval to count after tracking, default as 10
        do_entrance_counting(bool): Whether counting the numbers of identifiers entering 
246
            or getting out from the entrance, default as False, only support single class
247
            counting in MOT.
248 249 250 251 252 253 254 255 256 257 258 259 260 261
    """

    def __init__(self,
                 cfg,
                 is_video=True,
                 multi_camera=False,
                 device='CPU',
                 run_mode='paddle',
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False,
262 263 264 265
                 output_dir='output',
                 draw_center_traj=False,
                 secs_interval=10,
                 do_entrance_counting=False):
266

Z
zhiboniu 已提交
267 268 269 270 271
        self.with_attr = cfg.get('ATTR', False)['enable'] if cfg.get(
            'ATTR', False) else False
        self.with_skeleton_action = cfg.get(
            'SKELETON_ACTION', False)['enable'] if cfg.get('SKELETON_ACTION',
                                                           False) else False
Z
zhiboniu 已提交
272 273 274 275 276 277 278 279 280
        self.with_video_action = cfg.get(
            'VIDEO_ACTION', False)['enable'] if cfg.get('VIDEO_ACTION',
                                                        False) else False
        self.with_idbased_detaction = cfg.get(
            'ID_BASED_DETACTION', False)['enable'] if cfg.get(
                'ID_BASED_DETACTION', False) else False
        self.with_idbased_clsaction = cfg.get(
            'ID_BASED_CLSACTION', False)['enable'] if cfg.get(
                'ID_BASED_CLSACTION', False) else False
Z
zhiboniu 已提交
281 282
        self.with_mtmct = cfg.get('REID', False)['enable'] if cfg.get(
            'REID', False) else False
283

W
wangguanzhong 已提交
284 285
        if self.with_attr:
            print('Attribute Recognition enabled')
Z
zhiboniu 已提交
286 287
        if self.with_skeleton_action:
            print('SkeletonAction Recognition enabled')
Z
zhiboniu 已提交
288 289 290 291 292 293
        if self.with_video_action:
            print('VideoAction Recognition enabled')
        if self.with_idbased_detaction:
            print('IDBASED Detection Action Recognition enabled')
        if self.with_idbased_clsaction:
            print('IDBASED Classification Action Recognition enabled')
Z
zhiboniu 已提交
294 295
        if self.with_mtmct:
            print("MTMCT enabled")
W
wangguanzhong 已提交
296

297 298 299 300 301 302
        self.modebase = {
            "framebased": False,
            "videobased": False,
            "idbased": False,
            "skeletonbased": False
        }
303

304 305 306 307
        self.is_video = is_video
        self.multi_camera = multi_camera
        self.cfg = cfg
        self.output_dir = output_dir
308 309 310
        self.draw_center_traj = draw_center_traj
        self.secs_interval = secs_interval
        self.do_entrance_counting = do_entrance_counting
311

J
JYChen 已提交
312
        self.warmup_frame = self.cfg['warmup_frame']
313 314
        self.pipeline_res = Result()
        self.pipe_timer = PipeTimer()
315
        self.file_name = None
Z
zhiboniu 已提交
316
        self.collector = DataCollector()
317 318 319 320 321 322 323 324 325 326 327 328 329

        if not is_video:
            det_cfg = self.cfg['DET']
            model_dir = det_cfg['model_dir']
            batch_size = det_cfg['batch_size']
            self.det_predictor = Detector(
                model_dir, device, run_mode, batch_size, trt_min_shape,
                trt_max_shape, trt_opt_shape, trt_calib_mode, cpu_threads,
                enable_mkldnn)
            if self.with_attr:
                attr_cfg = self.cfg['ATTR']
                model_dir = attr_cfg['model_dir']
                batch_size = attr_cfg['batch_size']
330 331
                basemode = attr_cfg['basemode']
                self.modebase[basemode] = True
332 333 334 335 336 337 338 339 340 341
                self.attr_predictor = AttrDetector(
                    model_dir, device, run_mode, batch_size, trt_min_shape,
                    trt_max_shape, trt_opt_shape, trt_calib_mode, cpu_threads,
                    enable_mkldnn)

        else:
            mot_cfg = self.cfg['MOT']
            model_dir = mot_cfg['model_dir']
            tracker_config = mot_cfg['tracker_config']
            batch_size = mot_cfg['batch_size']
342 343
            basemode = mot_cfg['basemode']
            self.modebase[basemode] = True
344
            self.mot_predictor = SDE_Detector(
345 346 347 348 349 350 351 352 353 354 355 356 357 358
                model_dir,
                tracker_config,
                device,
                run_mode,
                batch_size,
                trt_min_shape,
                trt_max_shape,
                trt_opt_shape,
                trt_calib_mode,
                cpu_threads,
                enable_mkldnn,
                draw_center_traj=draw_center_traj,
                secs_interval=secs_interval,
                do_entrance_counting=do_entrance_counting)
359 360 361 362
            if self.with_attr:
                attr_cfg = self.cfg['ATTR']
                model_dir = attr_cfg['model_dir']
                batch_size = attr_cfg['batch_size']
363 364
                basemode = attr_cfg['basemode']
                self.modebase[basemode] = True
365 366 367 368
                self.attr_predictor = AttrDetector(
                    model_dir, device, run_mode, batch_size, trt_min_shape,
                    trt_max_shape, trt_opt_shape, trt_calib_mode, cpu_threads,
                    enable_mkldnn)
Z
zhiboniu 已提交
369
            if self.with_idbased_detaction:
J
JYChen 已提交
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
                idbased_detaction_cfg = self.cfg['ID_BASED_DETACTION']
                model_dir = idbased_detaction_cfg['model_dir']
                batch_size = idbased_detaction_cfg['batch_size']
                basemode = idbased_detaction_cfg['basemode']
                threshold = idbased_detaction_cfg['threshold']
                display_frames = idbased_detaction_cfg['display_frames']
                self.modebase[basemode] = True
                self.det_action_predictor = DetActionRecognizer(
                    model_dir,
                    device,
                    run_mode,
                    batch_size,
                    trt_min_shape,
                    trt_max_shape,
                    trt_opt_shape,
                    trt_calib_mode,
                    cpu_threads,
                    enable_mkldnn,
                    threshold=threshold,
                    display_frames=display_frames)
                self.det_action_visual_helper = ActionVisualHelper(1)

Z
zhiboniu 已提交
392
            if self.with_idbased_clsaction:
J
JYChen 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
                idbased_clsaction_cfg = self.cfg['ID_BASED_CLSACTION']
                model_dir = idbased_clsaction_cfg['model_dir']
                batch_size = idbased_clsaction_cfg['batch_size']
                basemode = idbased_clsaction_cfg['basemode']
                threshold = idbased_clsaction_cfg['threshold']
                self.modebase[basemode] = True
                display_frames = idbased_clsaction_cfg['display_frames']
                self.cls_action_predictor = ClsActionRecognizer(
                    model_dir,
                    device,
                    run_mode,
                    batch_size,
                    trt_min_shape,
                    trt_max_shape,
                    trt_opt_shape,
                    trt_calib_mode,
                    cpu_threads,
                    enable_mkldnn,
                    threshold=threshold,
                    display_frames=display_frames)
                self.cls_action_visual_helper = ActionVisualHelper(1)

Z
zhiboniu 已提交
415 416 417 418 419 420 421 422
            if self.with_skeleton_action:
                skeleton_action_cfg = self.cfg['SKELETON_ACTION']
                skeleton_action_model_dir = skeleton_action_cfg['model_dir']
                skeleton_action_batch_size = skeleton_action_cfg['batch_size']
                skeleton_action_frames = skeleton_action_cfg['max_frames']
                display_frames = skeleton_action_cfg['display_frames']
                self.coord_size = skeleton_action_cfg['coord_size']
                basemode = skeleton_action_cfg['basemode']
423 424
                self.modebase[basemode] = True

Z
zhiboniu 已提交
425 426
                self.skeleton_action_predictor = SkeletonActionRecognizer(
                    skeleton_action_model_dir,
J
JYChen 已提交
427 428
                    device,
                    run_mode,
Z
zhiboniu 已提交
429
                    skeleton_action_batch_size,
J
JYChen 已提交
430 431 432 433 434 435
                    trt_min_shape,
                    trt_max_shape,
                    trt_opt_shape,
                    trt_calib_mode,
                    cpu_threads,
                    enable_mkldnn,
Z
zhiboniu 已提交
436
                    window_size=skeleton_action_frames)
J
JYChen 已提交
437
                self.skeleton_action_visual_helper = ActionVisualHelper(
Z
zhiboniu 已提交
438
                    display_frames)
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455

                if self.modebase["skeletonbased"]:
                    kpt_cfg = self.cfg['KPT']
                    kpt_model_dir = kpt_cfg['model_dir']
                    kpt_batch_size = kpt_cfg['batch_size']
                    self.kpt_predictor = KeyPointDetector(
                        kpt_model_dir,
                        device,
                        run_mode,
                        kpt_batch_size,
                        trt_min_shape,
                        trt_max_shape,
                        trt_opt_shape,
                        trt_calib_mode,
                        cpu_threads,
                        enable_mkldnn,
                        use_dark=False)
Z
zhiboniu 已提交
456
                    self.kpt_buff = KeyPointBuff(skeleton_action_frames)
Z
zhiboniu 已提交
457

458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
            if self.with_video_action:
                video_action_cfg = self.cfg['VIDEO_ACTION']

                basemode = video_action_cfg['basemode']
                self.modebase[basemode] = True

                video_action_model_dir = video_action_cfg['model_dir']
                video_action_batch_size = video_action_cfg['batch_size']
                short_size = video_action_cfg["short_size"]
                target_size = video_action_cfg["target_size"]

                self.video_action_predictor = VideoActionRecognizer(
                    model_dir=video_action_model_dir,
                    short_size=short_size,
                    target_size=target_size,
                    device=device,
                    run_mode=run_mode,
                    batch_size=video_action_batch_size,
                    trt_min_shape=trt_min_shape,
                    trt_max_shape=trt_max_shape,
                    trt_opt_shape=trt_opt_shape,
                    trt_calib_mode=trt_calib_mode,
                    cpu_threads=cpu_threads,
                    enable_mkldnn=enable_mkldnn)

Z
zhiboniu 已提交
483 484 485 486 487 488 489 490
        if self.with_mtmct:
            reid_cfg = self.cfg['REID']
            model_dir = reid_cfg['model_dir']
            batch_size = reid_cfg['batch_size']
            self.reid_predictor = ReID(model_dir, device, run_mode, batch_size,
                                       trt_min_shape, trt_max_shape,
                                       trt_opt_shape, trt_calib_mode,
                                       cpu_threads, enable_mkldnn)
491

492
    def set_file_name(self, path):
W
wangguanzhong 已提交
493 494 495 496 497
        if path is not None:
            self.file_name = os.path.split(path)[-1]
        else:
            # use camera id
            self.file_name = None
498

499
    def get_result(self):
Z
zhiboniu 已提交
500
        return self.collector.get_res()
501 502 503 504 505 506

    def run(self, input):
        if self.is_video:
            self.predict_video(input)
        else:
            self.predict_image(input)
507
        self.pipe_timer.info()
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525

    def predict_image(self, input):
        # det
        # det -> attr
        batch_loop_cnt = math.ceil(
            float(len(input)) / self.det_predictor.batch_size)
        for i in range(batch_loop_cnt):
            start_index = i * self.det_predictor.batch_size
            end_index = min((i + 1) * self.det_predictor.batch_size, len(input))
            batch_file = input[start_index:end_index]
            batch_input = [decode_image(f, {})[0] for f in batch_file]

            if i > self.warmup_frame:
                self.pipe_timer.total_time.start()
                self.pipe_timer.module_time['det'].start()
            # det output format: class, score, xmin, ymin, xmax, ymax
            det_res = self.det_predictor.predict_image(
                batch_input, visual=False)
526 527
            det_res = self.det_predictor.filter_box(det_res,
                                                    self.cfg['crop_thresh'])
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
            if i > self.warmup_frame:
                self.pipe_timer.module_time['det'].end()
            self.pipeline_res.update(det_res, 'det')

            if self.with_attr:
                crop_inputs = crop_image_with_det(batch_input, det_res)
                attr_res_list = []

                if i > self.warmup_frame:
                    self.pipe_timer.module_time['attr'].start()

                for crop_input in crop_inputs:
                    attr_res = self.attr_predictor.predict_image(
                        crop_input, visual=False)
                    attr_res_list.extend(attr_res['output'])

                if i > self.warmup_frame:
                    self.pipe_timer.module_time['attr'].end()

                attr_res = {'output': attr_res_list}
                self.pipeline_res.update(attr_res, 'attr')

            self.pipe_timer.img_num += len(batch_input)
            if i > self.warmup_frame:
                self.pipe_timer.total_time.end()

            if self.cfg['visual']:
                self.visualize_image(batch_file, batch_input, self.pipeline_res)

Z
zhiboniu 已提交
557
    def predict_video(self, video_file):
558 559 560
        # mot
        # mot -> attr
        # mot -> pose -> action
Z
zhiboniu 已提交
561
        capture = cv2.VideoCapture(video_file)
562
        video_out_name = 'output.mp4' if self.file_name is None else self.file_name
563 564 565 566 567 568

        # Get Video info : resolution, fps, frame count
        width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(capture.get(cv2.CAP_PROP_FPS))
        frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
569
        print("video fps: %d, frame_count: %d" % (fps, frame_count))
570 571 572 573 574 575 576

        if not os.path.exists(self.output_dir):
            os.makedirs(self.output_dir)
        out_path = os.path.join(self.output_dir, video_out_name)
        fourcc = cv2.VideoWriter_fourcc(* 'mp4v')
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
        frame_id = 0
577 578 579 580 581 582 583 584 585 586 587 588 589

        entrance, records, center_traj = None, None, None
        if self.draw_center_traj:
            center_traj = [{}]
        id_set = set()
        interval_id_set = set()
        in_id_list = list()
        out_id_list = list()
        prev_center = dict()
        records = list()
        entrance = [0, height / 2., width, height / 2.]
        video_fps = fps

590 591
        video_action_imgs = []

592 593 594 595
        if self.with_video_action:
            short_size = self.cfg["VIDEO_ACTION"]["short_size"]
            scale = ShortSizeScale(short_size)

596 597 598
        while (1):
            if frame_id % 10 == 0:
                print('frame id: ', frame_id)
599

600 601 602 603
            ret, frame = capture.read()
            if not ret:
                break

604
            if self.modebase["idbased"] or self.modebase["skeletonbased"]:
605
                if frame_id > self.warmup_frame:
606 607 608 609
                    self.pipe_timer.total_time.start()
                    self.pipe_timer.module_time['mot'].start()
                res = self.mot_predictor.predict_image(
                    [copy.deepcopy(frame)], visual=False)
610

J
JYChen 已提交
611
                if frame_id > self.warmup_frame:
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
                    self.pipe_timer.module_time['mot'].end()

                # mot output format: id, class, score, xmin, ymin, xmax, ymax
                mot_res = parse_mot_res(res)

                # flow_statistic only support single class MOT
                boxes, scores, ids = res[0]  # batch size = 1 in MOT
                mot_result = (frame_id + 1, boxes[0], scores[0],
                              ids[0])  # single class
                statistic = flow_statistic(
                    mot_result, self.secs_interval, self.do_entrance_counting,
                    video_fps, entrance, id_set, interval_id_set, in_id_list,
                    out_id_list, prev_center, records)
                records = statistic['records']

                # nothing detected
                if len(mot_res['boxes']) == 0:
                    frame_id += 1
J
JYChen 已提交
630
                    if frame_id > self.warmup_frame:
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
                        self.pipe_timer.img_num += 1
                        self.pipe_timer.total_time.end()
                    if self.cfg['visual']:
                        _, _, fps = self.pipe_timer.get_total_time()
                        im = self.visualize_video(frame, mot_res, frame_id, fps,
                                                  entrance, records,
                                                  center_traj)  # visualize
                        writer.write(im)
                        if self.file_name is None:  # use camera_id
                            cv2.imshow('PPHuman', im)
                            if cv2.waitKey(1) & 0xFF == ord('q'):
                                break

                    continue

                self.pipeline_res.update(mot_res, 'mot')
J
JYChen 已提交
647 648 649 650

                #todo: move this code to each class's predeal function
                crop_input, new_bboxes, ori_bboxes = crop_image_with_mot(
                    frame, mot_res)
651 652

                if self.with_attr:
J
JYChen 已提交
653
                    if frame_id > self.warmup_frame:
654 655 656 657 658 659 660
                        self.pipe_timer.module_time['attr'].start()
                    attr_res = self.attr_predictor.predict_image(
                        crop_input, visual=False)
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['attr'].end()
                    self.pipeline_res.update(attr_res, 'attr')

Z
zhiboniu 已提交
661
                if self.with_idbased_detaction:
J
JYChen 已提交
662 663 664 665 666 667 668 669 670 671
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['det_action'].start()
                    det_action_res = self.det_action_predictor.predict(
                        crop_input, mot_res)
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['det_action'].end()
                    self.pipeline_res.update(det_action_res, 'det_action')

                    if self.cfg['visual']:
                        self.det_action_visual_helper.update(det_action_res)
Z
zhiboniu 已提交
672 673

                if self.with_idbased_clsaction:
J
JYChen 已提交
674 675 676 677 678 679 680 681 682 683
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['cls_action'].start()
                    cls_action_res = self.cls_action_predictor.predict_with_mot(
                        crop_input, mot_res)
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['cls_action'].end()
                    self.pipeline_res.update(cls_action_res, 'cls_action')

                    if self.cfg['visual']:
                        self.cls_action_visual_helper.update(cls_action_res)
Z
zhiboniu 已提交
684

Z
zhiboniu 已提交
685
                if self.with_skeleton_action:
Z
zhiboniu 已提交
686 687 688 689 690 691 692 693 694 695 696 697 698
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['kpt'].start()
                    kpt_pred = self.kpt_predictor.predict_image(
                        crop_input, visual=False)
                    keypoint_vector, score_vector = translate_to_ori_images(
                        kpt_pred, np.array(new_bboxes))
                    kpt_res = {}
                    kpt_res['keypoint'] = [
                        keypoint_vector.tolist(), score_vector.tolist()
                    ] if len(keypoint_vector) > 0 else [[], []]
                    kpt_res['bbox'] = ori_bboxes
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['kpt'].end()
699

Z
zhiboniu 已提交
700
                    self.pipeline_res.update(kpt_res, 'kpt')
701

Z
zhiboniu 已提交
702
                    self.kpt_buff.update(kpt_res, mot_res)  # collect kpt output
703 704 705
                    state = self.kpt_buff.get_state(
                    )  # whether frame num is enough or lost tracker

Z
zhiboniu 已提交
706
                    skeleton_action_res = {}
707 708
                    if state:
                        if frame_id > self.warmup_frame:
Z
zhiboniu 已提交
709 710
                            self.pipe_timer.module_time[
                                'skeleton_action'].start()
711 712
                        collected_keypoint = self.kpt_buff.get_collected_keypoint(
                        )  # reoragnize kpt output with ID
Z
zhiboniu 已提交
713 714 715 716
                        skeleton_action_input = parse_mot_keypoint(
                            collected_keypoint, self.coord_size)
                        skeleton_action_res = self.skeleton_action_predictor.predict_skeleton_with_mot(
                            skeleton_action_input)
717
                        if frame_id > self.warmup_frame:
Z
zhiboniu 已提交
718 719 720
                            self.pipe_timer.module_time['skeleton_action'].end()
                        self.pipeline_res.update(skeleton_action_res,
                                                 'skeleton_action')
721 722

                    if self.cfg['visual']:
Z
zhiboniu 已提交
723 724
                        self.skeleton_action_visual_helper.update(
                            skeleton_action_res)
725 726 727 728 729 730 731 732 733 734

                if self.with_mtmct and frame_id % 10 == 0:
                    crop_input, img_qualities, rects = self.reid_predictor.crop_image_with_mot(
                        frame, mot_res)
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['reid'].start()
                    reid_res = self.reid_predictor.predict_batch(crop_input)

                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['reid'].end()
J
JYChen 已提交
735

736 737 738 739 740 741 742 743
                    reid_res_dict = {
                        'features': reid_res,
                        "qualities": img_qualities,
                        "rects": rects
                    }
                    self.pipeline_res.update(reid_res_dict, 'reid')
                else:
                    self.pipeline_res.clear('reid')
Z
zhiboniu 已提交
744

Z
zhiboniu 已提交
745
            if self.with_video_action:
746 747 748 749 750 751 752 753 754 755 756 757 758
                # get the params
                frame_len = self.cfg["VIDEO_ACTION"]["frame_len"]
                sample_freq = self.cfg["VIDEO_ACTION"]["sample_freq"]

                if sample_freq * frame_len > frame_count:  # video is too short
                    sample_freq = int(frame_count / frame_len)

                # filter the warmup frames
                if frame_id > self.warmup_frame:
                    self.pipe_timer.module_time['video_action'].start()

                # collect frames
                if frame_id % sample_freq == 0:
759 760 761
                    # Scale image
                    scaled_img = scale(frame)
                    video_action_imgs.append(scaled_img)
762 763 764 765 766 767 768 769 770 771 772 773 774 775

                # the number of collected frames is enough to predict video action
                if len(video_action_imgs) == frame_len:
                    classes, scores = self.video_action_predictor.predict(
                        video_action_imgs)
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['video_action'].end()

                    video_action_res = {"class": classes[0], "score": scores[0]}
                    self.pipeline_res.update(video_action_res, 'video_action')

                    print("video_action_res:", video_action_res)

                    video_action_imgs.clear()  # next clip
Z
zhiboniu 已提交
776 777

            self.collector.append(frame_id, self.pipeline_res)
778 779 780 781 782 783 784

            if frame_id > self.warmup_frame:
                self.pipe_timer.img_num += 1
                self.pipe_timer.total_time.end()
            frame_id += 1

            if self.cfg['visual']:
785 786
                _, _, fps = self.pipe_timer.get_total_time()
                im = self.visualize_video(frame, self.pipeline_res, frame_id,
787 788
                                          fps, entrance, records,
                                          center_traj)  # visualize
789
                writer.write(im)
W
wangguanzhong 已提交
790 791 792 793
                if self.file_name is None:  # use camera_id
                    cv2.imshow('PPHuman', im)
                    if cv2.waitKey(1) & 0xFF == ord('q'):
                        break
794 795 796 797

        writer.release()
        print('save result to {}'.format(out_path))

798 799 800 801 802 803 804 805
    def visualize_video(self,
                        image,
                        result,
                        frame_id,
                        fps,
                        entrance=None,
                        records=None,
                        center_traj=None):
Z
zhiboniu 已提交
806
        mot_res = copy.deepcopy(result.get('mot'))
807 808
        if mot_res is not None:
            ids = mot_res['boxes'][:, 0]
W
wangguanzhong 已提交
809
            scores = mot_res['boxes'][:, 2]
810 811 812 813 814 815
            boxes = mot_res['boxes'][:, 3:]
            boxes[:, 2] = boxes[:, 2] - boxes[:, 0]
            boxes[:, 3] = boxes[:, 3] - boxes[:, 1]
        else:
            boxes = np.zeros([0, 4])
            ids = np.zeros([0])
W
wangguanzhong 已提交
816
            scores = np.zeros([0])
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838

        # single class, still need to be defaultdict type for ploting
        num_classes = 1
        online_tlwhs = defaultdict(list)
        online_scores = defaultdict(list)
        online_ids = defaultdict(list)
        online_tlwhs[0] = boxes
        online_scores[0] = scores
        online_ids[0] = ids

        image = plot_tracking_dict(
            image,
            num_classes,
            online_tlwhs,
            online_ids,
            online_scores,
            frame_id=frame_id,
            fps=fps,
            do_entrance_counting=self.do_entrance_counting,
            entrance=entrance,
            records=records,
            center_traj=center_traj)
839 840 841 842 843 844 845 846

        attr_res = result.get('attr')
        if attr_res is not None:
            boxes = mot_res['boxes'][:, 1:]
            attr_res = attr_res['output']
            image = visualize_attr(image, attr_res, boxes)
            image = np.array(image)

J
JYChen 已提交
847 848 849 850 851 852 853 854
        kpt_res = result.get('kpt')
        if kpt_res is not None:
            image = visualize_pose(
                image,
                kpt_res,
                visual_thresh=self.cfg['kpt_thresh'],
                returnimg=True)

855
        video_action_res = result.get('video_action')
J
JYChen 已提交
856
        if video_action_res is not None:
857 858 859 860 861 862
            video_action_score = None
            if video_action_res and video_action_res["class"] == 1:
                video_action_score = video_action_res["score"]
            image = visualize_action(
                image,
                mot_res['boxes'],
J
JYChen 已提交
863
                action_visual_collector=None,
864 865 866
                action_text="SkeletonAction",
                video_action_score=video_action_score,
                video_action_text="Fight")
J
JYChen 已提交
867

J
JYChen 已提交
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
        visual_helper_for_display = []
        action_to_display = []

        skeleton_action_res = result.get('skeleton_action')
        if skeleton_action_res is not None:
            visual_helper_for_display.append(self.skeleton_action_visual_helper)
            action_to_display.append("Falling")

        det_action_res = result.get('det_action')
        if det_action_res is not None:
            visual_helper_for_display.append(self.det_action_visual_helper)
            action_to_display.append("Smoking")

        cls_action_res = result.get('cls_action')
        if cls_action_res is not None:
            visual_helper_for_display.append(self.cls_action_visual_helper)
            action_to_display.append("Calling")

        if len(visual_helper_for_display) > 0:
            image = visualize_action(image, mot_res['boxes'],
                                     visual_helper_for_display,
                                     action_to_display)

891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
        return image

    def visualize_image(self, im_files, images, result):
        start_idx, boxes_num_i = 0, 0
        det_res = result.get('det')
        attr_res = result.get('attr')
        for i, (im_file, im) in enumerate(zip(im_files, images)):
            if det_res is not None:
                det_res_i = {}
                boxes_num_i = det_res['boxes_num'][i]
                det_res_i['boxes'] = det_res['boxes'][start_idx:start_idx +
                                                      boxes_num_i, :]
                im = visualize_box_mask(
                    im,
                    det_res_i,
                    labels=['person'],
                    threshold=self.cfg['crop_thresh'])
908 909
                im = np.ascontiguousarray(np.copy(im))
                im = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
910 911 912 913 914 915 916 917
            if attr_res is not None:
                attr_res_i = attr_res['output'][start_idx:start_idx +
                                                boxes_num_i]
                im = visualize_attr(im, attr_res_i, det_res_i['boxes'])
            img_name = os.path.split(im_file)[-1]
            if not os.path.exists(self.output_dir):
                os.makedirs(self.output_dir)
            out_path = os.path.join(self.output_dir, img_name)
918
            cv2.imwrite(out_path, im)
919 920 921 922 923 924 925
            print("save result to: " + out_path)
            start_idx += boxes_num_i


def main():
    cfg = merge_cfg(FLAGS)
    print_arguments(cfg)
926

927 928
    pipeline = Pipeline(
        cfg, FLAGS.image_file, FLAGS.image_dir, FLAGS.video_file,
Z
zhiboniu 已提交
929
        FLAGS.video_dir, FLAGS.camera_id, FLAGS.device, FLAGS.run_mode,
930 931 932 933
        FLAGS.trt_min_shape, FLAGS.trt_max_shape, FLAGS.trt_opt_shape,
        FLAGS.trt_calib_mode, FLAGS.cpu_threads, FLAGS.enable_mkldnn,
        FLAGS.output_dir, FLAGS.draw_center_traj, FLAGS.secs_interval,
        FLAGS.do_entrance_counting)
934 935 936 937 938 939 940 941 942 943 944 945 946

    pipeline.run()


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"

    main()