QUICK_STARTED.md 2.2 KB
Newer Older
1 2 3 4
English | [简体中文](QUICK_STARTED_cn.md)

# Quick Start

W
wangguanzhong 已提交
5
This tutorial fine-tunes a tiny dataset by pretrained detection model for users to get a model and learn PaddleDetection quickly. The model can be trained in around 15min with good performance.
6 7 8 9 10 11 12 13 14 15

## Data Preparation

Dataset refers to [Kaggle](https://www.kaggle.com/mbkinaci/fruit-images-for-object-detection), which contains 240 images in train dataset and 60 images in test dataset. Data categories are apple, orange and banana. Download [here](https://dataset.bj.bcebos.com/PaddleDetection_demo/fruit-detection.tar) and uncompress the dataset after download, script for data preparation is located at [download.sh](../dataset/fruit/download.sh). Command is as follows:

```bash
cd dataset/fruit
sh download.sh
```

W
wangguanzhong 已提交
16
- **Note: before started, run the following command and specifiy the GPU**
17 18 19 20

```bash
export PYTHONPATH=$PYTHONPATH:.
export CUDA_VISIBLE_DEVICES=0
W
wangguanzhong 已提交
21 22 23 24 25
```

Training:

```bash
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
python -u tools/train.py -c configs/yolov3_mobilenet_v1_fruit.yml \
                        --use_tb=True \
                        --tb_log_dir=tb_fruit_dir/scalar \
                        --eval \
```

Use `yolov3_mobilenet_v1` to fine-tune the model from COCO dataset. Meanwhile, loss and mAP can be observed on tensorboard.  

```bash
tensorboard --logdir tb_fruit_dir/scalar/ --host <host_IP> --port <port_num>
```

Result on tensorboard is shown below:

<div align="center">
  <img src="../demo/tensorboard_fruit.jpg" />
</div>

Model can be downloaded [here](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_fruit.tar)

Evaluation:

```bash
python -u tools/eval.py -c configs/yolov3_mobilenet_v1_fruit.yml
```

Inference:

```bash
W
wangguanzhong 已提交
55 56 57
python -u tools/infer.py -c configs/yolov3_mobilenet_v1_fruit.yml \
                         -o weights=https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_fruit.tar \
                         --infer_img=demo/000000570688.jpg
58 59 60 61 62 63 64 65 66 67
```

Inference images are shown below:

<p align="center">
  <img src="../demo/orange_71.jpg" height=400 width=400 hspace='10'/>
  <img src="../demo/orange_71_detection.jpg" height=400 width=400 hspace='10'/>
</p>

For detailed infomation of training and evalution, please refer to [GETTING_STARTED.md](GETTING_STARTED.md).