QUICK_STARTED.md 2.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
English | [简体中文](QUICK_STARTED_cn.md)

# Quick Start

This tutorial fine-tunes a tiny dataset by pretrained detection model for users to get a model and learn PaddleDetection quickly. The model can be trained in around 15min with good performance. 

## Data Preparation

Dataset refers to [Kaggle](https://www.kaggle.com/mbkinaci/fruit-images-for-object-detection), which contains 240 images in train dataset and 60 images in test dataset. Data categories are apple, orange and banana. Download [here](https://dataset.bj.bcebos.com/PaddleDetection_demo/fruit-detection.tar) and uncompress the dataset after download, script for data preparation is located at [download.sh](../dataset/fruit/download.sh). Command is as follows:

```bash
cd dataset/fruit
sh download.sh
```

Training command is as follows:

```bash
export PYTHONPATH=$PYTHONPATH:.
export CUDA_VISIBLE_DEVICES=0
python -u tools/train.py -c configs/yolov3_mobilenet_v1_fruit.yml \
                        --use_tb=True \
                        --tb_log_dir=tb_fruit_dir/scalar \
                        --eval \
```

Use `yolov3_mobilenet_v1` to fine-tune the model from COCO dataset. Meanwhile, loss and mAP can be observed on tensorboard.  

```bash
tensorboard --logdir tb_fruit_dir/scalar/ --host <host_IP> --port <port_num>
```

Result on tensorboard is shown below:

<div align="center">
  <img src="../demo/tensorboard_fruit.jpg" />
</div>

Model can be downloaded [here](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_fruit.tar)

Evaluation:

```bash
export PYTHONPATH=$PYTHONPATH:.
export CUDA_VISIBLE_DEVICES=0
python -u tools/eval.py -c configs/yolov3_mobilenet_v1_fruit.yml
```

Inference:

```bash
export PYTHONPATH=$PYTHONPATH:.
export CUDA_VISIBLE_DEVICES=0
python -u tools/infer.py -c configs/yolov3_mobilenet_v1_fruit.yml
```

Inference images are shown below:

<p align="center">
  <img src="../demo/orange_71.jpg" height=400 width=400 hspace='10'/>
  <img src="../demo/orange_71_detection.jpg" height=400 width=400 hspace='10'/>
</p>

For detailed infomation of training and evalution, please refer to [GETTING_STARTED.md](GETTING_STARTED.md).