README_en.md 19.7 KB
Newer Older
J
JYChen 已提交
1 2 3 4
[简体中文](README.md) | English

# KeyPoint Detection Models

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
## Content

- [Introduction](#introduction)
- [Model Recommendation](#model-recommendation)
- [Model Zoo](#model-zoo)
- [Getting Start](#getting-start)
  - [Environmental Installation](#1environmental-installation)
  - [Dataset Preparation](#2dataset-preparation)
  - [Training and Testing](#3training-and-testing)
    - [Training on single GPU](#training-on-single-gpu)
    - [Training on multiple GPU](#training-on-multiple-gpu)
    - [Evaluation](#evaluation)
    - [Inference](#inference)
    - [Deploy Inference](#deploy-inference)
      - [Deployment for Top-Down models](#deployment-for-top-down-models)
      - [Deployment for Bottom-Up models](#deployment-for-bottom-up-models)
      - [Joint Inference with Multi-Object Tracking Model FairMOT](#joint-inference-with-multi-object-tracking-model-fairmot)
22 23
  - [Complete Deploy Instruction and Demo](#complete-deploy-instruction-and-demo)
- [Train with custom data](#train-with-custom-data)
24
- [BenchMark](#benchmark)
J
JYChen 已提交
25 26 27

## Introduction

28
The keypoint detection part in PaddleDetection follows the state-of-the-art algorithm closely, including Top-Down and Bottom-Up methods, which can satisfy the different needs of users. Top-Down detects the object first and then detects the specific keypoint. Top-Down models will be more accurate, but slower as the number of objects increases. Differently, Bottom-Up detects the point first and then group or connect those points to form several instances of human pose. The speed of Bottom-Up is fixed, it won't slow down as the number of objects increases, but it will be less accurate.
29

30
At the same time, PaddleDetection provides a self-developed real-time keypoint detection model [PP-TinyPose](./tiny_pose/README_en.md) optimized for mobile devices.
J
JYChen 已提交
31 32

<div align="center">
33
  <img src="https://user-images.githubusercontent.com/22989727/205551833-a891a790-73c6-43cb-84f9-91553e9ef27b.gif" width='800'/>
J
JYChen 已提交
34 35
</div>

36 37 38 39
## Model Recommendation

### Mobile Terminal

Z
zhiboniu 已提交
40 41


42

Z
zhiboniu 已提交
43 44
| Detection Model                                              | Keypoint Model                        |               Input Size                |             Accuracy of COCO             |     Average Inference Time (FP16)     |             Params (M)             |             Flops (G)              |                         Model Weight                         |              Paddle-Lite Inference Model(FP16)              |
| :----------------------------------------------------------- | :------------------------------------ | :-------------------------------------: | :--------------------------------------: | :-----------------------------------: | :--------------------------------: | :--------------------------------: | :----------------------------------------------------------: | :----------------------------------------------------------: |
J
JYChen 已提交
45 46
| [PicoDet-S-Pedestrian](../picodet/legacy_model/application/pedestrian_detection/picodet_s_192_pedestrian.yml) | [PP-TinyPose](./tiny_pose/tinypose_128x96.yml)  | Detection:192x192<br>Keypoint:128x96  | Detection mAP:29.0<br>Keypoint AP:58.1 | Detection:2.37ms<br>Keypoint:3.27ms | Detection:1.18<br/>Keypoint:1.36 | Detection:0.35<br/>Keypoint:0.08 | [Detection](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian.pdparams)<br>[Keypoint](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96.pdparams) | [Detection](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian_fp16.nb)<br>[Keypoint](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96_fp16.nb) |
| [PicoDet-S-Pedestrian](../picodet/legacy_model/application/pedestrian_detection/picodet_s_320_pedestrian.yml) | [PP-TinyPose](./tiny_pose/tinypose_256x192.yml) | Detection:320x320<br>Keypoint:256x192 | Detection mAP:38.5<br>Keypoint AP:68.8 | Detection:6.30ms<br>Keypoint:8.33ms | Detection:1.18<br/>Keypoint:1.36 | Detection:0.97<br/>Keypoint:0.32 | [Detection](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian.pdparams)<br>[Keypoint](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_256x192.pdparams) | [Detection](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian_fp16.nb)<br>[Keypoint](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_256x192_fp16.nb) |
Z
zhiboniu 已提交
47

48

J
JYChen 已提交
49
*Specific documents of PP-TinyPose, please refer to [Document](./tiny_pose/README.md)
J
JYChen 已提交
50

51 52
### Terminal Server

53

Z
zhiboniu 已提交
54 55 56 57 58
| Detection Model                                              | Keypoint Model                             |               Input Size                |             Accuracy of COCO             |           Params (M)            |            Flops (G)            |                         Model Weight                         |
| :----------------------------------------------------------- | :----------------------------------------- | :-------------------------------------: | :--------------------------------------: | :-----------------------------: | :-----------------------------: | :----------------------------------------------------------: |
| [PP-YOLOv2](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml) | [HRNet-w32](./hrnet/hrnet_w32_384x288.yml) | Detection:640x640<br>Keypoint:384x288 | Detection mAP:49.5<br>Keypoint AP:77.8 | Detection:54.6<br/>Keypoint:28.6 | Detection:115.8<br/>Keypoint:17.3 | [Detection](https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams)<br>[Keypoint](https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_256x192.pdparams) |
| [PP-YOLOv2](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml) | [HRNet-w32](./hrnet/hrnet_w32_256x192.yml) | Detection:640x640<br>Keypoint:256x192 | Detection mAP:49.5<br>Keypoint AP:76.9 | Detection:54.6<br/>Keypoint:28.6 | Detection:115.8<br/>Keypoint:7.68 | [Detection](https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams)<br>[Keypoint](https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_384x288.pdparams) |

59 60

## Model Zoo
J
JYChen 已提交
61 62 63 64

COCO Dataset
| Model              | Input Size | AP(coco val) |                           Model Download                           | Config File                                                    |
| :---------------- | -------- | :----------: | :----------------------------------------------------------: | ----------------------------------------------------------- |
65
| PETR_Res50       |One-Stage| 512      |     65.5     | [petr_res50.pdparams](https://bj.bcebos.com/v1/paddledet/models/keypoint/petr_resnet50_16x2_coco.pdparams) | [config](./petr/petr_resnet50_16x2_coco.yml)       |
J
JYChen 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
| HigherHRNet-w32       | 512      |     67.1     | [higherhrnet_hrnet_w32_512.pdparams](https://paddledet.bj.bcebos.com/models/keypoint/higherhrnet_hrnet_w32_512.pdparams) | [config](./higherhrnet/higherhrnet_hrnet_w32_512.yml)       |
| HigherHRNet-w32       | 640      |     68.3     | [higherhrnet_hrnet_w32_640.pdparams](https://paddledet.bj.bcebos.com/models/keypoint/higherhrnet_hrnet_w32_640.pdparams) | [config](./higherhrnet/higherhrnet_hrnet_w32_640.yml)       |
| HigherHRNet-w32+SWAHR | 512      |     68.9     | [higherhrnet_hrnet_w32_512_swahr.pdparams](https://paddledet.bj.bcebos.com/models/keypoint/higherhrnet_hrnet_w32_512_swahr.pdparams) | [config](./higherhrnet/higherhrnet_hrnet_w32_512_swahr.yml) |
| HRNet-w32             | 256x192  |     76.9     | [hrnet_w32_256x192.pdparams](https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_256x192.pdparams) | [config](./hrnet/hrnet_w32_256x192.yml)                     |
| HRNet-w32             | 384x288  |     77.8     | [hrnet_w32_384x288.pdparams](https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_384x288.pdparams) | [config](./hrnet/hrnet_w32_384x288.yml)                     |
| HRNet-w32+DarkPose             | 256x192  |     78.0     | [dark_hrnet_w32_256x192.pdparams](https://paddledet.bj.bcebos.com/models/keypoint/dark_hrnet_w32_256x192.pdparams) | [config](./hrnet/dark_hrnet_w32_256x192.yml)                     |
| HRNet-w32+DarkPose             | 384x288  |     78.3     | [dark_hrnet_w32_384x288.pdparams](https://paddledet.bj.bcebos.com/models/keypoint/dark_hrnet_w32_384x288.pdparams) | [config](./hrnet/dark_hrnet_w32_384x288.yml)                     |
| WiderNaiveHRNet-18         | 256x192  |     67.6(+DARK 68.4)     | [wider_naive_hrnet_18_256x192_coco.pdparams](https://bj.bcebos.com/v1/paddledet/models/keypoint/wider_naive_hrnet_18_256x192_coco.pdparams) | [config](./lite_hrnet/wider_naive_hrnet_18_256x192_coco.yml)     |
| LiteHRNet-18                   | 256x192  |     66.5     | [lite_hrnet_18_256x192_coco.pdparams](https://bj.bcebos.com/v1/paddledet/models/keypoint/lite_hrnet_18_256x192_coco.pdparams) | [config](./lite_hrnet/lite_hrnet_18_256x192_coco.yml)     |
| LiteHRNet-18                   | 384x288  |     69.7     | [lite_hrnet_18_384x288_coco.pdparams](https://bj.bcebos.com/v1/paddledet/models/keypoint/lite_hrnet_18_384x288_coco.pdparams) | [config](./lite_hrnet/lite_hrnet_18_384x288_coco.yml)     |
| LiteHRNet-30                   | 256x192  |     69.4     | [lite_hrnet_30_256x192_coco.pdparams](https://bj.bcebos.com/v1/paddledet/models/keypoint/lite_hrnet_30_256x192_coco.pdparams) | [config](./lite_hrnet/lite_hrnet_30_256x192_coco.yml)     |
| LiteHRNet-30                   | 384x288  |     72.5     | [lite_hrnet_30_384x288_coco.pdparams](https://bj.bcebos.com/v1/paddledet/models/keypoint/lite_hrnet_30_384x288_coco.pdparams) | [config](./lite_hrnet/lite_hrnet_30_384x288_coco.yml)     |

Note:The AP results of Top-Down models are based on bounding boxes in GroundTruth.

MPII Dataset
| Model  | Input Size | PCKh(Mean) | PCKh(Mean@0.1) |                           Model Download                           | Config File                                     |
| :---- | -------- | :--------: | :------------: | :----------------------------------------------------------: | -------------------------------------------- |
| HRNet-w32 | 256x256  |    90.6    |      38.5      | [hrnet_w32_256x256_mpii.pdparams](https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_256x256_mpii.pdparams) | [config](./hrnet/hrnet_w32_256x256_mpii.yml) |

J
JYChen 已提交
86 87 88 89

Model for Scenes
| Model | Strategy | Input Size | Precision | Inference Speed |Model Weights | Model Inference and Deployment | description|
| :---- | ---|----- | :--------: | :-------: |:------------: |:------------: |:-------------------: |
J
JYChen 已提交
90
| HRNet-w32 + DarkPose | Top-Down|256x192  |  AP: 87.1 (on internal dataset)| 2.9ms per person |[Link](https://bj.bcebos.com/v1/paddledet/models/pipeline/dark_hrnet_w32_256x192.pdparams) |[Link](https://bj.bcebos.com/v1/paddledet/models/pipeline/dark_hrnet_w32_256x192.zip) | Especially optimized for fall scenarios, the model is applied to [PP-Human](../../deploy/pipeline/README.md) |
J
JYChen 已提交
91 92


J
JYChen 已提交
93 94 95 96
We also release [PP-TinyPose](./tiny_pose/README_en.md), a real-time keypoint detection model optimized for mobile devices. Welcome to experience.

## Getting Start

97
### 1.Environmental Installation
J
JYChen 已提交
98

99
​    Please refer to [PaddleDetection Installation Guide](../../docs/tutorials/INSTALL.md) to install PaddlePaddle and PaddleDetection correctly.
J
JYChen 已提交
100

101
### 2.Dataset Preparation
J
JYChen 已提交
102

J
JYChen 已提交
103
​    Currently, KeyPoint Detection Models support [COCO](https://cocodataset.org/#keypoints-2017) and [MPII](http://human-pose.mpi-inf.mpg.de/#overview). Please refer to [Keypoint Dataset Preparation](../../docs/tutorials/data/PrepareKeypointDataSet_en.md) to prepare dataset.
J
JYChen 已提交
104 105 106

​   About the description for config files, please refer to [Keypoint Config Guild](../../docs/tutorials/KeyPointConfigGuide_en.md).

107
- Note that, when testing by detected bounding boxes in Top-Down method, We should get `bbox.json` by a detection model. You can download the detected results for COCO val2017 [(Detector having human AP of 56.4 on COCO val2017 dataset)](https://paddledet.bj.bcebos.com/data/bbox.json) directly, put it at the root path (`PaddleDetection/`), and set `use_gt_bbox: False` in config file.
J
JYChen 已提交
108

109
### 3.Training and Testing
J
JYChen 已提交
110

111
#### Training on single GPU
J
JYChen 已提交
112 113 114 115 116 117 118 119 120

```shell
#COCO DataSet
CUDA_VISIBLE_DEVICES=0 python3 tools/train.py -c configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_512.yml

#MPII DataSet
CUDA_VISIBLE_DEVICES=0 python3 tools/train.py -c configs/keypoint/hrnet/hrnet_w32_256x256_mpii.yml
```

121
#### Training on multiple GPU
J
JYChen 已提交
122 123 124 125 126 127 128 129 130

```shell
#COCO DataSet
CUDA_VISIBLE_DEVICES=0,1,2,3 python3 -m paddle.distributed.launch tools/train.py -c configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_512.yml

#MPII DataSet
CUDA_VISIBLE_DEVICES=0,1,2,3 python3 -m paddle.distributed.launch tools/train.py -c configs/keypoint/hrnet/hrnet_w32_256x256_mpii.yml
```

131
#### Evaluation
J
JYChen 已提交
132 133 134 135 136 137 138 139 140 141 142 143

```shell
#COCO DataSet
CUDA_VISIBLE_DEVICES=0 python3 tools/eval.py -c configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_512.yml

#MPII DataSet
CUDA_VISIBLE_DEVICES=0 python3 tools/eval.py -c configs/keypoint/hrnet/hrnet_w32_256x256_mpii.yml

#If you only need the prediction result, you can set --save_prediction_only. Then the result will be saved at output/keypoints_results.json by default.
CUDA_VISIBLE_DEVICES=0 python3 tools/eval.py -c configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_512.yml --save_prediction_only
```

144
#### Inference
J
JYChen 已提交
145 146 147 148 149 150 151

​    Note:Top-down models only support inference for a cropped image with single person. If you want to do inference on image with several people, please see "joint inference by detection and keypoint". Or you can choose a Bottom-up model.

```shell
CUDA_VISIBLE_DEVICES=0 python3 tools/infer.py -c configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_512.yml -o weights=./output/higherhrnet_hrnet_w32_512/model_final.pdparams --infer_dir=../images/ --draw_threshold=0.5 --save_txt=True
```

152 153 154
#### Deploy Inference

##### Deployment for Top-Down models
J
JYChen 已提交
155 156

```shell
157
#Export Detection Model
J
JYChen 已提交
158
python tools/export_model.py -c configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams
J
JYChen 已提交
159 160


161 162
#Export Keypoint Model
python tools/export_model.py -c configs/keypoint/hrnet/hrnet_w32_256x192.yml -o weights=https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_256x192.pdparams
J
JYChen 已提交
163

164
#Deployment for detector and keypoint, which is only for Top-Down models
J
JYChen 已提交
165 166 167
python deploy/python/det_keypoint_unite_infer.py --det_model_dir=output_inference/ppyolo_r50vd_dcn_2x_coco/ --keypoint_model_dir=output_inference/hrnet_w32_384x288/ --video_file=../video/xxx.mp4  --device=gpu
```

168 169 170 171 172 173 174 175 176 177 178 179
##### Deployment for Bottom-Up models

```shell
#Export model
python tools/export_model.py -c configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_512.yml -o weights=output/higherhrnet_hrnet_w32_512/model_final.pdparams


#Keypoint independent deployment, which is only for bottom-up models
python deploy/python/keypoint_infer.py --model_dir=output_inference/higherhrnet_hrnet_w32_512/ --image_file=./demo/000000014439_640x640.jpg --device=gpu --threshold=0.5
```

##### Joint Inference with Multi-Object Tracking Model FairMOT
J
JYChen 已提交
180 181 182 183 184 185 186 187

```shell
#export FairMOT model
python tools/export_model.py -c configs/mot/fairmot/fairmot_dla34_30e_1088x608.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608.pdparams

#joint inference with Multi-Object Tracking model FairMOT
python deploy/python/mot_keypoint_unite_infer.py --mot_model_dir=output_inference/fairmot_dla34_30e_1088x608/ --keypoint_model_dir=output_inference/higherhrnet_hrnet_w32_512/ --video_file={your video name}.mp4 --device=GPU
```
188

J
JYChen 已提交
189 190 191
**Note:**
 To export MOT model, please refer to [Here](../../configs/mot/README_en.md).

192
### Complete Deploy Instruction and Demo
193

W
wangguanzhong 已提交
194
​ We provide standalone deploy of PaddleInference(Server-GPU)、PaddleLite(mobile、ARM)、Third-Engine(MNN、OpenVino), which is independent of training codes。For detail, please click [Deploy-docs](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.6/deploy/README_en.md)
Z
zhiboniu 已提交
195

Z
zhiboniu 已提交
196 197
## Train with custom data

J
JYChen 已提交
198
We take an example of [tinypose_256x192](./tiny_pose/README_en.md) to show how to train with custom data.
Z
zhiboniu 已提交
199 200 201

#### 1、For configs [tinypose_256x192.yml](../../configs/keypoint/tiny_pose/tinypose_256x192.yml)

C
chenxujun 已提交
202
you may need to modify these for your job:
Z
zhiboniu 已提交
203 204 205 206 207 208 209 210

```
num_joints: &num_joints 17    #the number of joints in your job
train_height: &train_height 256   #the height of model input
train_width: &train_width 192   #the width of model input
hmsize: &hmsize [48, 64]  #the shape of model output,usually 1/4 of [w,h]
flip_perm: &flip_perm [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12], [13, 14], [15, 16]] #the correspondence between left and right keypoint id,used for flip transform。You can add an line(by "flip: False") behind of flip_pairs in RandomFlipHalfBodyTransform of TrainReader if you don't need it
num_joints_half_body: 8   #The joint numbers of half body, used for half_body transform
C
chenxujun 已提交
211
prob_half_body: 0.3   #The probability of half_body transform, set to 0 if you don't need it
Z
zhiboniu 已提交
212 213 214 215 216 217 218 219 220 221 222 223
upper_body_ids: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]    #The joint ids of half(upper) body, used to get the upper joints in half_body transform
```

For more configs, please refer to [KeyPointConfigGuide](../../docs/tutorials/KeyPointConfigGuide_en.md)

#### 2、Others(used for test and visualization)
- In keypoint_utils.py, please set: "sigmas = np.array([.26, .25, .25, .35, .35, .79, .79, .72, .72, .62, .62, 1.07, 1.07,.87, .87, .89, .89]) / 10.0", the value indicate the variance of a joint locations,normally 0.25-0.5 means the location is highly accuracy,for example: eyes。0.5-1.0 means the location is not sure so much,for example: shoulder。0.75 is recommand if you not sure。
- In visualizer.py, please set "EDGES" in draw_pose function,this indicate the line to show between joints for visualization。
- In pycocotools you installed, please set "sigmas",it is the same as that in keypoint_utils.py, but used for coco evaluation。

#### 3、Note for data preparation
- The data should has the same format as Coco data, and the keypoints(Nx3) and bbox(N) should be annotated.
224
- please set "area">0 in annotations files otherwise it will be skiped while training. Moreover, due to the evaluation mechanism of COCO, the data with small area may also be filtered out during evaluation. We recommend to set `area = bbox_w * bbox_h` when customizing your dataset.
Z
zhiboniu 已提交
225 226


227
## BenchMark
Z
zhiboniu 已提交
228

W
wangguanzhong 已提交
229
We provide benchmarks in different runtime environments for your reference when choosing models. See [Keypoint Inference Benchmark](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.6/configs/keypoint/KeypointBenchmark.md) for details.
J
JYChen 已提交
230 231

## Reference
232

J
JYChen 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
```
@inproceedings{cheng2020bottom,
  title={HigherHRNet: Scale-Aware Representation Learning for Bottom-Up Human Pose Estimation},
  author={Bowen Cheng and Bin Xiao and Jingdong Wang and Honghui Shi and Thomas S. Huang and Lei Zhang},
  booktitle={CVPR},
  year={2020}
}

@inproceedings{SunXLW19,
  title={Deep High-Resolution Representation Learning for Human Pose Estimation},
  author={Ke Sun and Bin Xiao and Dong Liu and Jingdong Wang},
  booktitle={CVPR},
  year={2019}
}

@article{wang2019deep,
  title={Deep High-Resolution Representation Learning for Visual Recognition},
  author={Wang, Jingdong and Sun, Ke and Cheng, Tianheng and Jiang, Borui and Deng, Chaorui and Zhao, Yang and Liu, Dong and Mu, Yadong and Tan, Mingkui and Wang, Xinggang and Liu, Wenyu and Xiao, Bin},
  journal={TPAMI},
  year={2019}
}

@InProceedings{Zhang_2020_CVPR,
    author = {Zhang, Feng and Zhu, Xiatian and Dai, Hanbin and Ye, Mao and Zhu, Ce},
    title = {Distribution-Aware Coordinate Representation for Human Pose Estimation},
    booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month = {June},
    year = {2020}
}

@inproceedings{Yulitehrnet21,
  title={Lite-HRNet: A Lightweight High-Resolution Network},
  author={Yu, Changqian and Xiao, Bin and Gao, Changxin and Yuan, Lu and Zhang, Lei and Sang, Nong and Wang, Jingdong},
  booktitle={CVPR},
  year={2021}
}
```