| HRNet-w32 + DarkPose | Top-Down|256x192 | AP: 87.1 (on internal dataset)| 2.9ms per person |[Link](https://bj.bcebos.com/v1/paddledet/models/pipeline/dark_hrnet_w32_256x192.pdparams) |[Link](https://bj.bcebos.com/v1/paddledet/models/pipeline/dark_hrnet_w32_256x192.zip) | Especially optimized for fall scenarios, the model is applied to [PP-Human](../../deploy/pipeline/README_en.md) |
| HRNet-w32 + DarkPose | Top-Down|256x192 | AP: 87.1 (on internal dataset)| 2.9ms per person |[Link](https://bj.bcebos.com/v1/paddledet/models/pipeline/dark_hrnet_w32_256x192.pdparams) |[Link](https://bj.bcebos.com/v1/paddledet/models/pipeline/dark_hrnet_w32_256x192.zip) | Especially optimized for fall scenarios, the model is applied to [PP-Human](../../deploy/pipeline/README.md) |
We also release [PP-TinyPose](./tiny_pose/README_en.md), a real-time keypoint detection model optimized for mobile devices. Welcome to experience.
...
...
@@ -106,7 +106,7 @@ We also release [PP-TinyPose](./tiny_pose/README_en.md), a real-time keypoint de
### 2.Dataset Preparation
Currently, KeyPoint Detection Models support [COCO](https://cocodataset.org/#keypoints-2017) and [MPII](http://human-pose.mpi-inf.mpg.de/#overview). Please refer to [Keypoint Dataset Preparation](../../docs/tutorials/PrepareKeypointDataSet_en.md) to prepare dataset.
Currently, KeyPoint Detection Models support [COCO](https://cocodataset.org/#keypoints-2017) and [MPII](http://human-pose.mpi-inf.mpg.de/#overview). Please refer to [Keypoint Dataset Preparation](../../docs/tutorials/data/PrepareDetDataSet_en.md) to prepare dataset.
About the description for config files, please refer to [Keypoint Config Guild](../../docs/tutorials/KeyPointConfigGuide_en.md).