reduce_op.cc 7.2 KB
Newer Older
G
guosheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/reduce_op.h"

namespace paddle {
namespace operators {

using framework::Tensor;

class ReduceOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext &ctx) const override {
G
guosheng 已提交
28 29 30 31
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
                            "Input(X) of ReduceOp should not be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
                            "Output(Out) of ReduceOp should not be null.");
G
guosheng 已提交
32 33
    auto x_dims = ctx.Input<Tensor>("X")->dims();
    auto x_rank = x_dims.size();
G
guosheng 已提交
34
    PADDLE_ENFORCE_LE(x_rank, 6, "Tensors with rank at most 6 are supported.");
35
    int dim = ctx.Attr<int>("dim");
G
guosheng 已提交
36 37 38
    if (dim < 0) dim = x_rank + dim;
    PADDLE_ENFORCE_LT(
        dim, x_rank,
G
guosheng 已提交
39 40
        "The dim should be in the range [-rank(input), rank(input)).");
    bool keep_dim = ctx.Attr<bool>("keep_dim");
G
guosheng 已提交
41 42 43 44 45 46 47
    auto dims_vector = vectorize(x_dims);
    if (keep_dim || x_rank == 1) {
      dims_vector[dim] = 1;
    } else {
      dims_vector.erase(dims_vector.begin() + dim);
    }
    auto out_dims = framework::make_ddim(dims_vector);
48 49 50 51 52
    ctx.Output<framework::Tensor>("Out")->Resize(out_dims);
    if (dim != 0) {
      // Only pass LoD when not reducing on the first dim
      ctx.ShareLoD("X", /*->*/ "Out");
    }
G
guosheng 已提交
53 54 55 56 57 58 59 60 61
  }
};

class ReduceGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext &ctx) const override {
G
guosheng 已提交
62
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) should not be null.");
G
guosheng 已提交
63
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
G
guosheng 已提交
64
                            "Input(Out@GRAD) should not be null.");
G
guosheng 已提交
65 66
    auto x_dims = ctx.Input<Tensor>("X")->dims();
    auto x_rank = x_dims.size();
G
guosheng 已提交
67
    PADDLE_ENFORCE_LE(x_rank, 6, "Tensors with rank at most 6 are supported.");
68
    int dim = ctx.Attr<int>("dim");
G
guosheng 已提交
69 70 71
    if (dim < 0) dim = x_rank + dim;
    PADDLE_ENFORCE_LT(
        dim, x_rank,
G
guosheng 已提交
72 73 74
        "The dim should be in the range [-rank(input), rank(input)).");
    auto *x_grad =
        ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
G
guosheng 已提交
75 76 77 78
    if (x_grad) x_grad->Resize(x_dims);
  }
};

G
guosheng 已提交
79
class ReduceOpMaker : public framework::OpProtoAndCheckerMaker {
G
guosheng 已提交
80
 public:
G
guosheng 已提交
81
  ReduceOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
G
guosheng 已提交
82 83 84 85 86
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput(
        "X",
        "(Tensor) The input tensor. Tensors with rank at most 6 are supported");
    AddOutput("Out", "(Tensor) The result tensor.");
87 88 89 90 91 92
    AddAttr<int>(
        "dim",
        "(int, default 1) The dimension to reduce. "
        "Must be in the range [-rank(input), rank(input)). "
        "If `dim < 0`, the dim to reduce is `rank + dim`. "
        "Noting that reducing on the first dim will make the LoD info lost.")
93
        .SetDefault(0);
G
guosheng 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
    AddAttr<bool>("keep_dim",
                  "(bool, default false) "
                  "If true, retain the reduced dimension with length 1.")
        .SetDefault(false);
    comment_ = R"DOC(
{ReduceOP} operator computes the {reduce} of input tensor along the given dimension. 
The result tensor has 1 fewer dimension than the input unless `keep_dim` is true.
)DOC";
    AddComment(comment_);
  }

 protected:
  std::string comment_;

  void Replace(std::string &src, std::string from, std::string to) {
    std::size_t len_from = std::strlen(from.c_str());
    std::size_t len_to = std::strlen(to.c_str());
    for (std::size_t pos = src.find(from); pos != std::string::npos;
         pos = src.find(from, pos + len_to)) {
      src.replace(pos, len_from, to);
    }
  }

  void SetComment(std::string name, std::string op) {
    Replace(comment_, "{ReduceOP}", name);
    Replace(comment_, "{reduce}", op);
G
guosheng 已提交
120 121 122
  }
};

G
guosheng 已提交
123 124 125 126 127 128 129 130 131 132 133
class ReduceSumOpMaker : public ReduceOpMaker {
 public:
  ReduceSumOpMaker(framework::OpProto *proto,
                   framework::OpAttrChecker *op_checker)
      : ReduceOpMaker(proto, op_checker) {
    SetComment("ReduceSum", "sum");
    AddComment(comment_);
  }
};

class ReduceMeanOpMaker : public ReduceOpMaker {
G
guosheng 已提交
134 135 136
 public:
  ReduceMeanOpMaker(framework::OpProto *proto,
                    framework::OpAttrChecker *op_checker)
G
guosheng 已提交
137 138 139
      : ReduceOpMaker(proto, op_checker) {
    SetComment("ReduceMean", "mean");
    AddComment(comment_);
G
guosheng 已提交
140 141 142
  }
};

G
guosheng 已提交
143
class ReduceMaxOpMaker : public ReduceOpMaker {
G
guosheng 已提交
144 145 146
 public:
  ReduceMaxOpMaker(framework::OpProto *proto,
                   framework::OpAttrChecker *op_checker)
G
guosheng 已提交
147 148 149
      : ReduceOpMaker(proto, op_checker) {
    SetComment("ReduceMax", "max");
    AddComment(comment_);
G
guosheng 已提交
150 151 152
  }
};

G
guosheng 已提交
153
class ReduceMinOpMaker : public ReduceOpMaker {
G
guosheng 已提交
154 155 156
 public:
  ReduceMinOpMaker(framework::OpProto *proto,
                   framework::OpAttrChecker *op_checker)
G
guosheng 已提交
157 158 159
      : ReduceOpMaker(proto, op_checker) {
    SetComment("ReduceMin", "min");
    AddComment(comment_);
G
guosheng 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP(reduce_sum, ops::ReduceOp, ops::ReduceSumOpMaker, reduce_sum_grad,
            ops::ReduceGradOp);
REGISTER_OP_CPU_KERNEL(
    reduce_sum,
    ops::ReduceKernel<paddle::platform::CPUPlace, float, ops::SumFunctor>);
REGISTER_OP_CPU_KERNEL(reduce_sum_grad,
                       ops::ReduceGradKernel<paddle::platform::CPUPlace, float,
                                             ops::SumGradFunctor>);

REGISTER_OP(reduce_mean, ops::ReduceOp, ops::ReduceMeanOpMaker,
            reduce_mean_grad, ops::ReduceGradOp);
REGISTER_OP_CPU_KERNEL(
    reduce_mean,
    ops::ReduceKernel<paddle::platform::CPUPlace, float, ops::MeanFunctor>);
REGISTER_OP_CPU_KERNEL(reduce_mean_grad,
                       ops::ReduceGradKernel<paddle::platform::CPUPlace, float,
                                             ops::MeanGradFunctor>);

REGISTER_OP(reduce_max, ops::ReduceOp, ops::ReduceMaxOpMaker, reduce_max_grad,
            ops::ReduceGradOp);
REGISTER_OP_CPU_KERNEL(
    reduce_max,
    ops::ReduceKernel<paddle::platform::CPUPlace, float, ops::MaxFunctor>);
REGISTER_OP_CPU_KERNEL(reduce_max_grad,
                       ops::ReduceGradKernel<paddle::platform::CPUPlace, float,
                                             ops::MaxOrMinGradFunctor>);

REGISTER_OP(reduce_min, ops::ReduceOp, ops::ReduceMaxOpMaker, reduce_min_grad,
            ops::ReduceGradOp);
REGISTER_OP_CPU_KERNEL(
    reduce_min,
    ops::ReduceKernel<paddle::platform::CPUPlace, float, ops::MinFunctor>);
REGISTER_OP_CPU_KERNEL(reduce_min_grad,
                       ops::ReduceGradKernel<paddle::platform::CPUPlace, float,
                                             ops::MaxOrMinGradFunctor>);