Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
c8d87719
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c8d87719
编写于
9月 14, 2017
作者:
G
guosheng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Revise the reduce_op unit test accordingly
上级
3994e91a
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
89 addition
and
86 deletion
+89
-86
paddle/operators/reduce_op.cc
paddle/operators/reduce_op.cc
+31
-25
paddle/operators/reduce_op.cu
paddle/operators/reduce_op.cu
+2
-2
paddle/operators/reduce_op.h
paddle/operators/reduce_op.h
+1
-1
python/paddle/v2/framework/tests/test_reduce_op.py
python/paddle/v2/framework/tests/test_reduce_op.py
+55
-58
未找到文件。
paddle/operators/reduce_op.cc
浏览文件 @
c8d87719
...
...
@@ -30,12 +30,14 @@ class ReduceOp : public framework::OperatorWithKernel {
auto
x_dims
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
();
auto
x_rank
=
x_dims
.
size
();
PADDLE_ENFORCE_LE
(
x_rank
,
6
,
"Tensors with rank at most 6 are supported"
);
int
dim
=
static_cast
<
int
>
(
ctx
.
Attr
<
int
>
(
"dim"
)
);
int
dim
=
ctx
.
Attr
<
int
>
(
"dim"
);
if
(
dim
<
0
)
dim
=
x_rank
+
dim
;
PADDLE_ENFORCE_LT
(
dim
,
x_rank
,
"The dim should be in the range [-rank(input), rank(input)]"
);
bool
keep_dim
=
true
;
// TODO;
"The dim should be in the range [-rank(input), rank(input))"
);
PADDLE_ENFORCE_GE
(
ctx
.
Attr
<
int
>
(
"keep_dim"
),
0
,
"keep_dim must be 0 or 1"
);
PADDLE_ENFORCE_LE
(
ctx
.
Attr
<
int
>
(
"keep_dim"
),
1
,
"keep_dim must be 0 or 1"
);
bool
keep_dim
=
ctx
.
Attr
<
int
>
(
"keep_dim"
)
==
1
;
auto
dims_vector
=
vectorize
(
x_dims
);
if
(
keep_dim
||
x_rank
==
1
)
{
dims_vector
[
dim
]
=
1
;
...
...
@@ -59,11 +61,11 @@ class ReduceGradOp : public framework::OperatorWithKernel {
auto
x_dims
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
();
auto
x_rank
=
x_dims
.
size
();
PADDLE_ENFORCE_LE
(
x_rank
,
6
,
"Tensors with rank at most 6 are supported"
);
int
dim
=
static_cast
<
int
>
(
ctx
.
Attr
<
int
>
(
"dim"
)
);
int
dim
=
ctx
.
Attr
<
int
>
(
"dim"
);
if
(
dim
<
0
)
dim
=
x_rank
+
dim
;
PADDLE_ENFORCE_LT
(
dim
,
x_rank
,
"The dim should be in the range [-rank(input), rank(input)
]
"
);
"The dim should be in the range [-rank(input), rank(input)
)
"
);
auto
*
x_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
if
(
x_grad
)
x_grad
->
Resize
(
x_dims
);
}
...
...
@@ -84,12 +86,13 @@ The result tensor has 1 fewer dimension than the input unless `keep_dim` is true
)DOC"
);
AddAttr
<
int
>
(
"dim"
,
"(int, default 0) The dimension to reduce. "
"Must be in the range [-rank(input), rank(input)]"
)
"Must be in the range [-rank(input), rank(input))"
)
.
SetDefault
(
0
);
AddAttr
<
int
>
(
"keep_dim"
,
"(int, default 0) "
"Must be 0 or 1. If 1, retain the reduced dimension with length 1."
)
.
SetDefault
(
0
);
AddAttr
<
bool
>
(
"keep_dim"
,
"(bool, default fasle) "
"If true, retain the reduced dimension with length 1."
)
.
SetDefault
(
false
);
}
};
...
...
@@ -108,12 +111,13 @@ The result tensor has 1 fewer dimension than the input unless `keep_dim` is true
)DOC"
);
AddAttr
<
int
>
(
"dim"
,
"(int, default 0) The dimension to reduce. "
"Must be in the range [-rank(input), rank(input)]"
)
"Must be in the range [-rank(input), rank(input))"
)
.
SetDefault
(
0
);
AddAttr
<
int
>
(
"keep_dim"
,
"(int, default 0) "
"Must be 0 or 1. If 1, retain the reduced dimension with length 1."
)
.
SetDefault
(
0
);
AddAttr
<
bool
>
(
"keep_dim"
,
"(bool, default fasle) "
"If true, retain the reduced dimension with length 1."
)
.
SetDefault
(
false
);
}
};
...
...
@@ -132,12 +136,13 @@ The result tensor has 1 fewer dimension than the input unless `keep_dim` is true
)DOC"
);
AddAttr
<
int
>
(
"dim"
,
"(int, default 0) The dimension to reduce. "
"Must be in the range [-rank(input), rank(input)]"
)
"Must be in the range [-rank(input), rank(input))"
)
.
SetDefault
(
0
);
AddAttr
<
int
>
(
"keep_dim"
,
"(int, default 0) "
"Must be 0 or 1. If 1, retain the reduced dimension with length 1."
)
.
SetDefault
(
0
);
AddAttr
<
bool
>
(
"keep_dim"
,
"(bool, default fasle) "
"If true, retain the reduced dimension with length 1."
)
.
SetDefault
(
false
);
}
};
...
...
@@ -156,12 +161,13 @@ The result tensor has 1 fewer dimension than the input unless `keep_dim` is true
)DOC"
);
AddAttr
<
int
>
(
"dim"
,
"(int, default 0) The dimension to reduce. "
"Must be in the range [-rank(input), rank(input)]"
)
"Must be in the range [-rank(input), rank(input))"
)
.
SetDefault
(
0
);
AddAttr
<
int
>
(
"keep_dim"
,
"(int, default 0) "
"Must be 0 or 1. If 1, retain the reduced dimension with length 1."
)
.
SetDefault
(
0
);
AddAttr
<
bool
>
(
"keep_dim"
,
"(bool, default fasle) "
"If true, retain the reduced dimension with length 1."
)
.
SetDefault
(
false
);
}
};
...
...
paddle/operators/reduce_op.cu
浏览文件 @
c8d87719
...
...
@@ -21,8 +21,8 @@ REGISTER_OP_GPU_KERNEL(
reduce_sum
,
ops
::
ReduceKernel
<
paddle
::
platform
::
GPUPlace
,
float
,
ops
::
SumFunctor
>
);
REGISTER_OP_GPU_KERNEL
(
reduce_sum_grad
,
ops
::
ReduceGrad
EigenKernel
<
paddle
::
platform
::
GPUPlace
,
float
,
ops
::
SumGradFunctor
>
);
ops
::
ReduceGrad
Kernel
<
paddle
::
platform
::
GPUPlace
,
float
,
ops
::
SumGradFunctor
>
);
REGISTER_OP_GPU_KERNEL
(
reduce_mean
,
...
...
paddle/operators/reduce_op.h
浏览文件 @
c8d87719
...
...
@@ -127,7 +127,7 @@ class ReduceKernel : public framework::OpKernel {
if
(
dim
<
0
)
dim
=
x_rank
+
dim
;
auto
reduce_dim
=
Eigen
::
array
<
int
,
1
>
({{
dim
}});
// construct the squeezed output tensor
bool
keep_dim
=
true
;
// static_cast<bool>(context.Attr<bool>("keep_dim"))
;
bool
keep_dim
=
context
.
Attr
<
int
>
(
"keep_dim"
)
==
1
;
DDim
dims
=
output
->
dims
();
auto
dims_vector
=
vectorize
(
dims
);
if
(
keep_dim
&&
x_rank
>
1
)
{
...
...
python/paddle/v2/framework/tests/test_reduce_op.py
浏览文件 @
c8d87719
import
unittest
import
numpy
as
np
from
gradient_checker
import
GradientChecker
,
create_op
from
op_test_util
import
OpTestMeta
from
paddle.v2.framework.op
import
Operator
from
op_test
import
OpTest
class
TestSumOp
(
unittest
.
TestCase
):
__metaclass__
=
OpTestMeta
class
TestSumOp
(
OpTest
):
def
setUp
(
self
):
self
.
type
=
"reduce_sum"
self
.
op_
type
=
"reduce_sum"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
10
)).
astype
(
"float32"
)}
self
.
attrs
=
{
'dim'
:
-
2
}
out
=
self
.
inputs
[
'X'
].
sum
(
axis
=
self
.
attrs
[
'dim'
])
self
.
outputs
=
{
'Out'
:
out
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
sum
(
axis
=
0
)}
def
test_check_output
(
self
):
self
.
check_output
()
class
TestSumGradOp
(
GradientChecker
):
def
test_normal
(
self
):
op
=
Operator
(
"reduce_sum"
,
X
=
"X"
,
Out
=
"Out"
,
dim
=-
2
)
# use small size to decrease the error of numerical calculation
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
10
)).
astype
(
"float32"
)}
self
.
check_grad
(
op
,
inputs
,
set
([
"X"
]),
"Out"
)
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
def
test_1d_tensor
(
self
):
op
=
Operator
(
"reduce_sum"
,
X
=
"X"
,
Out
=
"Out"
,
dim
=
0
)
# use small size to decrease the error of numerical calculation
inputs
=
{
'X'
:
np
.
random
.
random
(
10
).
astype
(
"float32"
)}
self
.
check_grad
(
op
,
inputs
,
set
([
"X"
]),
"Out"
)
class
TestMeanOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_mean"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
2
,
10
)).
astype
(
"float32"
)}
self
.
attrs
=
{
'dim'
:
1
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
mean
(
axis
=
self
.
attrs
[
'dim'
])}
class
TestKeepdimSumOp
(
unittest
.
TestCase
):
__metaclass__
=
OpTestMeta
def
test_check_output
(
self
):
self
.
check_output
()
def
setUp
(
self
):
self
.
type
=
"reduce_sum"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
10
)).
astype
(
"float32"
)}
self
.
attrs
=
{
'dim'
:
-
2
}
out
=
self
.
inputs
[
'X'
].
sum
(
axis
=
self
.
attrs
[
'dim'
],
keepdims
=
True
)
self
.
outputs
=
{
'Out'
:
out
}
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
class
TestM
eanOp
(
unittest
.
TestCase
):
__metaclass__
=
OpTestMeta
class
TestM
axOp
(
OpTest
):
"""Remove Max with subgradient from gradient check to confirm the success of CI."""
def
setUp
(
self
):
self
.
type
=
"reduce_mean
"
self
.
op_type
=
"reduce_max
"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
10
)).
astype
(
"float32"
)}
self
.
attrs
=
{
'dim'
:
-
1
}
out
=
self
.
inputs
[
'X'
].
mean
(
axis
=
self
.
attrs
[
'dim'
])
self
.
outputs
=
{
'Out'
:
out
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
max
(
axis
=
self
.
attrs
[
'dim'
])}
def
test_check_output
(
self
):
self
.
check_output
()
class
TestMeanGradOp
(
GradientChecker
):
def
test_normal
(
self
):
op
=
Operator
(
"reduce_mean"
,
X
=
"X"
,
Out
=
"Out"
,
dim
=-
2
)
# use small size to decrease the error of numerical calculation
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
10
)).
astype
(
"float32"
)}
self
.
check_grad
(
op
,
inputs
,
set
([
"X"
]),
"Out"
)
class
TestMinOp
(
OpTest
):
"""Remove Min with subgradient from gradient check to confirm the success of CI."""
def
test_1d_tensor
(
self
):
op
=
Operator
(
"reduce_mean"
,
X
=
"X"
,
Out
=
"Out"
,
dim
=
0
)
# use small size to decrease the error of numerical calculation
inputs
=
{
'X'
:
np
.
random
.
random
(
10
).
astype
(
"float32"
)
}
self
.
check_grad
(
op
,
inputs
,
set
([
"X"
]),
"Out"
)
def
setUp
(
self
):
self
.
op_type
=
"reduce_min"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
10
)).
astype
(
"float32"
)}
self
.
attrs
=
{
'dim'
:
2
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
min
(
axis
=
self
.
attrs
[
'dim'
])}
def
test_check_output
(
self
):
self
.
check_output
()
class
TestMaxOp
(
unittest
.
TestCase
):
__metaclass__
=
OpTestMeta
class
TestKeepDimReduce
(
OpTest
):
def
setUp
(
self
):
self
.
type
=
"reduce_max
"
self
.
op_type
=
"reduce_sum
"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
10
)).
astype
(
"float32"
)}
self
.
attrs
=
{
'dim'
:
-
1
}
out
=
self
.
inputs
[
'X'
].
max
(
axis
=
self
.
attrs
[
'dim'
])
self
.
outputs
=
{
'Out'
:
out
}
self
.
attrs
=
{
'dim'
:
-
2
,
'keep_dim'
:
1
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
sum
(
axis
=
self
.
attrs
[
'dim'
],
keepdims
=
True
)
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
class
TestMinOp
(
unittest
.
TestCase
):
__metaclass__
=
OpTestMeta
class
Test1DReduce
(
OpTest
):
def
setUp
(
self
):
self
.
type
=
"reduce_max"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
10
)).
astype
(
"float32"
)}
self
.
attrs
=
{
'dim'
:
-
2
}
out
=
self
.
inputs
[
'X'
].
min
(
axis
=
self
.
attrs
[
'dim'
])
self
.
outputs
=
{
'Out'
:
out
}
self
.
op_type
=
"reduce_sum"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
(
20
).
astype
(
"float32"
)}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
sum
(
axis
=
0
)}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录