checkpoint.py 15.0 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import os
import numpy as np
import paddle
W
wangxinxin08 已提交
23
import paddle.nn as nn
Q
qingqing01 已提交
24 25 26 27 28 29 30 31 32 33 34 35
from .download import get_weights_path

from .logger import setup_logger
logger = setup_logger(__name__)


def is_url(path):
    """
    Whether path is URL.
    Args:
        path (string): URL string or not.
    """
K
Kaipeng Deng 已提交
36 37 38
    return path.startswith('http://') \
            or path.startswith('https://') \
            or path.startswith('ppdet://')
Q
qingqing01 已提交
39 40 41 42 43 44 45 46 47


def _strip_postfix(path):
    path, ext = os.path.splitext(path)
    assert ext in ['', '.pdparams', '.pdopt', '.pdmodel'], \
            "Unknown postfix {} from weights".format(ext)
    return path


48
def load_weight(model, weight, optimizer=None, ema=None, exchange=True):
Q
qingqing01 已提交
49
    if is_url(weight):
K
Kaipeng Deng 已提交
50
        weight = get_weights_path(weight)
Q
qingqing01 已提交
51 52 53 54 55 56 57

    path = _strip_postfix(weight)
    pdparam_path = path + '.pdparams'
    if not os.path.exists(pdparam_path):
        raise ValueError("Model pretrain path {} does not "
                         "exists.".format(pdparam_path))

S
shangliang Xu 已提交
58
    if ema is not None and os.path.exists(path + '.pdema'):
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
        if exchange:
            # Exchange model and ema_model to load
            logger.info('Exchange model and ema_model to load:')
            ema_state_dict = paddle.load(pdparam_path)
            logger.info('Loading ema_model weights from {}'.format(path +
                                                                   '.pdparams'))
            param_state_dict = paddle.load(path + '.pdema')
            logger.info('Loading model weights from {}'.format(path + '.pdema'))
        else:
            ema_state_dict = paddle.load(path + '.pdema')
            logger.info('Loading ema_model weights from {}'.format(path +
                                                                   '.pdema'))
            param_state_dict = paddle.load(pdparam_path)
            logger.info('Loading model weights from {}'.format(path +
                                                               '.pdparams'))
S
shangliang Xu 已提交
74 75 76 77
    else:
        ema_state_dict = None
        param_state_dict = paddle.load(pdparam_path)

78 79 80 81 82 83 84 85 86
    if hasattr(model, 'modelTeacher') and hasattr(model, 'modelStudent'):
        print('Loading pretrain weights for Teacher-Student framework.')
        print('Loading pretrain weights for Student model.')
        student_model_dict = model.modelStudent.state_dict()
        student_param_state_dict = match_state_dict(
            student_model_dict, param_state_dict, mode='student')
        model.modelStudent.set_dict(student_param_state_dict)
        print('Loading pretrain weights for Teacher model.')
        teacher_model_dict = model.modelTeacher.state_dict()
87

88 89 90 91 92 93 94 95 96 97
        teacher_param_state_dict = match_state_dict(
            teacher_model_dict, param_state_dict, mode='teacher')
        model.modelTeacher.set_dict(teacher_param_state_dict)

    else:
        model_dict = model.state_dict()
        model_weight = {}
        incorrect_keys = 0
        for key in model_dict.keys():
            if key in param_state_dict.keys():
98 99
                model_weight[key] = param_state_dict[key]
            else:
100 101 102 103 104 105 106
                logger.info('Unmatched key: {}'.format(key))
                incorrect_keys += 1
        assert incorrect_keys == 0, "Load weight {} incorrectly, \
                {} keys unmatched, please check again.".format(weight,
                                                               incorrect_keys)
        logger.info('Finish resuming model weights: {}'.format(pdparam_path))
        model.set_dict(model_weight)
Q
qingqing01 已提交
107

G
Guanghua Yu 已提交
108
    last_epoch = 0
Q
qingqing01 已提交
109 110
    if optimizer is not None and os.path.exists(path + '.pdopt'):
        optim_state_dict = paddle.load(path + '.pdopt')
111
        # to solve resume bug, will it be fixed in paddle 2.0
Q
qingqing01 已提交
112 113 114 115 116 117
        for key in optimizer.state_dict().keys():
            if not key in optim_state_dict.keys():
                optim_state_dict[key] = optimizer.state_dict()[key]
        if 'last_epoch' in optim_state_dict:
            last_epoch = optim_state_dict.pop('last_epoch')
        optimizer.set_state_dict(optim_state_dict)
G
Guanghua Yu 已提交
118

S
shangliang Xu 已提交
119
        if ema_state_dict is not None:
S
shangliang Xu 已提交
120 121
            ema.resume(ema_state_dict,
                       optim_state_dict['LR_Scheduler']['last_epoch'])
S
shangliang Xu 已提交
122 123
    elif ema_state_dict is not None:
        ema.resume(ema_state_dict)
G
Guanghua Yu 已提交
124
    return last_epoch
Q
qingqing01 已提交
125 126


127
def match_state_dict(model_state_dict, weight_state_dict, mode='default'):
W
wangguanzhong 已提交
128 129 130 131 132 133
    """
    Match between the model state dict and pretrained weight state dict.
    Return the matched state dict.

    The method supposes that all the names in pretrained weight state dict are
    subclass of the names in models`, if the prefix 'backbone.' in pretrained weight
S
shangliang Xu 已提交
134
    keys is stripped. And we could get the candidates for each model key. Then we
W
wangguanzhong 已提交
135
    select the name with the longest matched size as the final match result. For
S
shangliang Xu 已提交
136
    example, the model state dict has the name of
W
wangguanzhong 已提交
137 138 139 140 141 142 143 144
    'backbone.res2.res2a.branch2a.conv.weight' and the pretrained weight as
    name of 'res2.res2a.branch2a.conv.weight' and 'branch2a.conv.weight'. We
    match the 'res2.res2a.branch2a.conv.weight' to the model key.
    """

    model_keys = sorted(model_state_dict.keys())
    weight_keys = sorted(weight_state_dict.keys())

145 146 147 148 149 150 151 152 153 154 155 156
    def teacher_match(a, b):
        # skip student params
        if b.startswith('modelStudent'):
            return False
        return a == b or a.endswith("." + b) or b.endswith("." + a)

    def student_match(a, b):
        # skip teacher params
        if b.startswith('modelTeacher'):
            return False
        return a == b or a.endswith("." + b) or b.endswith("." + a)

W
wangguanzhong 已提交
157
    def match(a, b):
W
wjm 已提交
158
        if b.startswith('backbone.res5'):
W
wangguanzhong 已提交
159
            b = b[9:]
W
wangguanzhong 已提交
160 161
        return a == b or a.endswith("." + b)

162 163 164 165 166 167 168
    if mode == 'student':
        match_op = student_match
    elif mode == 'teacher':
        match_op = teacher_match
    else:
        match_op = match

W
wangguanzhong 已提交
169 170 171
    match_matrix = np.zeros([len(model_keys), len(weight_keys)])
    for i, m_k in enumerate(model_keys):
        for j, w_k in enumerate(weight_keys):
172
            if match_op(m_k, w_k):
W
wangguanzhong 已提交
173 174 175 176
                match_matrix[i, j] = len(w_k)
    max_id = match_matrix.argmax(1)
    max_len = match_matrix.max(1)
    max_id[max_len == 0] = -1
W
wjm 已提交
177 178
    load_id = set(max_id)
    load_id.discard(-1)
G
Guanghua Yu 已提交
179
    not_load_weight_name = []
W
wjm 已提交
180 181 182 183 184 185 186 187 188
    if weight_keys[0].startswith('modelStudent') or weight_keys[0].startswith(
            'modelTeacher'):
        for match_idx in range(len(max_id)):
            if max_id[match_idx] == -1:
                not_load_weight_name.append(model_keys[match_idx])
        if len(not_load_weight_name) > 0:
            logger.info('{} in model is not matched with pretrained weights, '
                        'and its will be trained from scratch'.format(
                            not_load_weight_name))
189

W
wjm 已提交
190 191 192 193 194 195 196 197 198
    else:
        for idx in range(len(weight_keys)):
            if idx not in load_id:
                not_load_weight_name.append(weight_keys[idx])

        if len(not_load_weight_name) > 0:
            logger.info('{} in pretrained weight is not used in the model, '
                        'and its will not be loaded'.format(
                            not_load_weight_name))
W
wangguanzhong 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
    matched_keys = {}
    result_state_dict = {}
    for model_id, weight_id in enumerate(max_id):
        if weight_id == -1:
            continue
        model_key = model_keys[model_id]
        weight_key = weight_keys[weight_id]
        weight_value = weight_state_dict[weight_key]
        model_value_shape = list(model_state_dict[model_key].shape)

        if list(weight_value.shape) != model_value_shape:
            logger.info(
                'The shape {} in pretrained weight {} is unmatched with '
                'the shape {} in model {}. And the weight {} will not be '
                'loaded'.format(weight_value.shape, weight_key,
                                model_value_shape, model_key, weight_key))
            continue

        assert model_key not in result_state_dict
        result_state_dict[model_key] = weight_value
        if weight_key in matched_keys:
            raise ValueError('Ambiguity weight {} loaded, it matches at least '
                             '{} and {} in the model'.format(
                                 weight_key, model_key, matched_keys[
                                     weight_key]))
        matched_keys[weight_key] = model_key
    return result_state_dict


228
def load_pretrain_weight(model, pretrain_weight, ARSL_eval=False):
Q
qingqing01 已提交
229
    if is_url(pretrain_weight):
K
Kaipeng Deng 已提交
230
        pretrain_weight = get_weights_path(pretrain_weight)
Q
qingqing01 已提交
231 232 233 234

    path = _strip_postfix(pretrain_weight)
    if not (os.path.isdir(path) or os.path.isfile(path) or
            os.path.exists(path + '.pdparams')):
235 236 237 238
        raise ValueError("Model pretrain path `{}` does not exists. "
                         "If you don't want to load pretrain model, "
                         "please delete `pretrain_weights` field in "
                         "config file.".format(path))
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
    teacher_student_flag = False
    if not ARSL_eval:
        if hasattr(model, 'modelTeacher') and hasattr(model, 'modelStudent'):
            print('Loading pretrain weights for Teacher-Student framework.')
            print(
                'Assert Teacher model has the same structure with Student model.'
            )
            model_dict = model.modelStudent.state_dict()
            teacher_student_flag = True
        else:
            model_dict = model.state_dict()

        weights_path = path + '.pdparams'
        param_state_dict = paddle.load(weights_path)
        param_state_dict = match_state_dict(model_dict, param_state_dict)
        for k, v in param_state_dict.items():
            if isinstance(v, np.ndarray):
                v = paddle.to_tensor(v)
            if model_dict[k].dtype != v.dtype:
                param_state_dict[k] = v.astype(model_dict[k].dtype)

        if teacher_student_flag:
            model.modelStudent.set_dict(param_state_dict)
            model.modelTeacher.set_dict(param_state_dict)
        else:
            model.set_dict(param_state_dict)
        logger.info('Finish loading model weights: {}'.format(weights_path))
Q
qingqing01 已提交
266

267 268 269 270 271 272 273 274 275
    else:
        weights_path = path + '.pdparams'
        param_state_dict = paddle.load(weights_path)
        student_model_dict = model.modelStudent.state_dict()
        student_param_state_dict = match_state_dict(
            student_model_dict, param_state_dict, mode='student')
        model.modelStudent.set_dict(student_param_state_dict)
        print('Loading pretrain weights for Teacher model.')
        teacher_model_dict = model.modelTeacher.state_dict()
276

277 278 279 280
        teacher_param_state_dict = match_state_dict(
            teacher_model_dict, param_state_dict, mode='teacher')
        model.modelTeacher.set_dict(teacher_param_state_dict)
        logger.info('Finish loading model weights: {}'.format(weights_path))
Q
qingqing01 已提交
281 282


S
shangliang Xu 已提交
283 284 285 286 287 288
def save_model(model,
               optimizer,
               save_dir,
               save_name,
               last_epoch,
               ema_model=None):
Q
qingqing01 已提交
289 290
    """
    save model into disk.
291

Q
qingqing01 已提交
292
    Args:
S
shangliang Xu 已提交
293
        model (dict): the model state_dict to save parameters.
Q
qingqing01 已提交
294 295 296 297 298
        optimizer (paddle.optimizer.Optimizer): the Optimizer instance to
            save optimizer states.
        save_dir (str): the directory to be saved.
        save_name (str): the path to be saved.
        last_epoch (int): the epoch index.
S
shangliang Xu 已提交
299
        ema_model (dict|None): the ema_model state_dict to save parameters.
Q
qingqing01 已提交
300
    """
301 302
    if paddle.distributed.get_rank() != 0:
        return
L
Lin Manhui 已提交
303 304
        
    save_dir = os.path.normpath(save_dir)
Q
qingqing01 已提交
305 306
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)
L
Lin Manhui 已提交
307 308 309 310 311 312

    if save_name == "best_model":
        best_model_path = os.path.join(save_dir, 'best_model')
        if not os.path.exists(best_model_path):
            os.makedirs(best_model_path)

Q
qingqing01 已提交
313
    save_path = os.path.join(save_dir, save_name)
S
shangliang Xu 已提交
314
    # save model
315 316
    if isinstance(model, nn.Layer):
        paddle.save(model.state_dict(), save_path + ".pdparams")
L
Lin Manhui 已提交
317
        best_model = model.state_dict()
S
shangliang Xu 已提交
318
    else:
319 320 321 322
        assert isinstance(model,
                          dict), 'model is not a instance of nn.layer or dict'
        if ema_model is None:
            paddle.save(model, save_path + ".pdparams")
L
Lin Manhui 已提交
323
            best_model = model
324 325 326 327 328 329 330
        else:
            assert isinstance(ema_model,
                              dict), ("ema_model is not a instance of dict, "
                                      "please call model.state_dict() to get.")
            # Exchange model and ema_model to save
            paddle.save(ema_model, save_path + ".pdparams")
            paddle.save(model, save_path + ".pdema")
L
Lin Manhui 已提交
331 332 333 334 335
            best_model = ema_model

    if save_name == 'best_model':
        best_model_path = os.path.join(best_model_path, 'model')
        paddle.save(best_model, best_model_path + ".pdparams")
S
shangliang Xu 已提交
336 337 338 339 340
    # save optimizer
    state_dict = optimizer.state_dict()
    state_dict['last_epoch'] = last_epoch
    paddle.save(state_dict, save_path + ".pdopt")
    logger.info("Save checkpoint: {}".format(save_dir))
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377


def save_semi_model(teacher_model, student_model, optimizer, save_dir,
                    save_name, last_epoch, last_iter):
    """
    save teacher and student model into disk.
    Args:
        teacher_model (dict): the teacher_model state_dict to save parameters.
        student_model (dict): the student_model state_dict to save parameters.
        optimizer (paddle.optimizer.Optimizer): the Optimizer instance to
            save optimizer states.
        save_dir (str): the directory to be saved.
        save_name (str): the path to be saved.
        last_epoch (int): the epoch index.
        last_iter (int): the iter index.
    """
    if paddle.distributed.get_rank() != 0:
        return
    assert isinstance(teacher_model, dict), (
        "teacher_model is not a instance of dict, "
        "please call teacher_model.state_dict() to get.")
    assert isinstance(student_model, dict), (
        "student_model is not a instance of dict, "
        "please call student_model.state_dict() to get.")
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)
    save_path = os.path.join(save_dir, save_name)
    # save model
    paddle.save(teacher_model, save_path + str(last_epoch) + "epoch_t.pdparams")
    paddle.save(student_model, save_path + str(last_epoch) + "epoch_s.pdparams")

    # save optimizer
    state_dict = optimizer.state_dict()
    state_dict['last_epoch'] = last_epoch
    state_dict['last_iter'] = last_iter
    paddle.save(state_dict, save_path + str(last_epoch) + "epoch.pdopt")
    logger.info("Save checkpoint: {}".format(save_dir))