checkpoint.py 8.6 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import errno
import os
import time
import numpy as np
import paddle
W
wangxinxin08 已提交
25
import paddle.nn as nn
Q
qingqing01 已提交
26 27 28 29 30 31 32 33 34 35 36 37
from .download import get_weights_path

from .logger import setup_logger
logger = setup_logger(__name__)


def is_url(path):
    """
    Whether path is URL.
    Args:
        path (string): URL string or not.
    """
K
Kaipeng Deng 已提交
38 39 40
    return path.startswith('http://') \
            or path.startswith('https://') \
            or path.startswith('ppdet://')
Q
qingqing01 已提交
41 42


43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
def _get_unique_endpoints(trainer_endpoints):
    # Sorting is to avoid different environmental variables for each card
    trainer_endpoints.sort()
    ips = set()
    unique_endpoints = set()
    for endpoint in trainer_endpoints:
        ip = endpoint.split(":")[0]
        if ip in ips:
            continue
        ips.add(ip)
        unique_endpoints.add(endpoint)
    logger.info("unique_endpoints {}".format(unique_endpoints))
    return unique_endpoints


Q
qingqing01 已提交
58 59 60 61 62 63 64
def _strip_postfix(path):
    path, ext = os.path.splitext(path)
    assert ext in ['', '.pdparams', '.pdopt', '.pdmodel'], \
            "Unknown postfix {} from weights".format(ext)
    return path


S
shangliang Xu 已提交
65
def load_weight(model, weight, optimizer=None, ema=None):
Q
qingqing01 已提交
66
    if is_url(weight):
K
Kaipeng Deng 已提交
67
        weight = get_weights_path(weight)
Q
qingqing01 已提交
68 69 70 71 72 73 74 75

    path = _strip_postfix(weight)
    pdparam_path = path + '.pdparams'
    if not os.path.exists(pdparam_path):
        raise ValueError("Model pretrain path {} does not "
                         "exists.".format(pdparam_path))

    param_state_dict = paddle.load(pdparam_path)
76 77 78 79 80 81 82 83 84 85 86 87 88 89
    model_dict = model.state_dict()
    model_weight = {}
    incorrect_keys = 0

    for key in model_dict.keys():
        if key in param_state_dict.keys():
            model_weight[key] = param_state_dict[key]
        else:
            logger.info('Unmatched key: {}'.format(key))
            incorrect_keys += 1

    assert incorrect_keys == 0, "Load weight {} incorrectly, \
            {} keys unmatched, please check again.".format(weight,
                                                           incorrect_keys)
K
Kaipeng Deng 已提交
90
    logger.info('Finish resuming model weights: {}'.format(pdparam_path))
91 92

    model.set_dict(model_weight)
Q
qingqing01 已提交
93

G
Guanghua Yu 已提交
94
    last_epoch = 0
Q
qingqing01 已提交
95 96
    if optimizer is not None and os.path.exists(path + '.pdopt'):
        optim_state_dict = paddle.load(path + '.pdopt')
97
        # to solve resume bug, will it be fixed in paddle 2.0
Q
qingqing01 已提交
98 99 100 101 102 103
        for key in optimizer.state_dict().keys():
            if not key in optim_state_dict.keys():
                optim_state_dict[key] = optimizer.state_dict()[key]
        if 'last_epoch' in optim_state_dict:
            last_epoch = optim_state_dict.pop('last_epoch')
        optimizer.set_state_dict(optim_state_dict)
G
Guanghua Yu 已提交
104

S
shangliang Xu 已提交
105 106 107 108
        if ema is not None and os.path.exists(path + '_ema.pdparams'):
            ema_state_dict = paddle.load(path + '_ema.pdparams')
            ema.resume(ema_state_dict,
                       optim_state_dict['LR_Scheduler']['last_epoch'])
G
Guanghua Yu 已提交
109
    return last_epoch
Q
qingqing01 已提交
110 111


W
wangguanzhong 已提交
112 113 114 115 116 117 118
def match_state_dict(model_state_dict, weight_state_dict):
    """
    Match between the model state dict and pretrained weight state dict.
    Return the matched state dict.

    The method supposes that all the names in pretrained weight state dict are
    subclass of the names in models`, if the prefix 'backbone.' in pretrained weight
S
shangliang Xu 已提交
119
    keys is stripped. And we could get the candidates for each model key. Then we
W
wangguanzhong 已提交
120
    select the name with the longest matched size as the final match result. For
S
shangliang Xu 已提交
121
    example, the model state dict has the name of
W
wangguanzhong 已提交
122 123 124 125 126 127 128 129 130
    'backbone.res2.res2a.branch2a.conv.weight' and the pretrained weight as
    name of 'res2.res2a.branch2a.conv.weight' and 'branch2a.conv.weight'. We
    match the 'res2.res2a.branch2a.conv.weight' to the model key.
    """

    model_keys = sorted(model_state_dict.keys())
    weight_keys = sorted(weight_state_dict.keys())

    def match(a, b):
131
        if b.startswith('backbone.res5'):
S
shangliang Xu 已提交
132
            # In Faster RCNN, res5 pretrained weights have prefix of backbone,
W
wangguanzhong 已提交
133 134
            # however, the corresponding model weights have difficult prefix,
            # bbox_head.
W
wangguanzhong 已提交
135
            b = b[9:]
W
wangguanzhong 已提交
136 137 138 139 140 141 142 143 144 145
        return a == b or a.endswith("." + b)

    match_matrix = np.zeros([len(model_keys), len(weight_keys)])
    for i, m_k in enumerate(model_keys):
        for j, w_k in enumerate(weight_keys):
            if match(m_k, w_k):
                match_matrix[i, j] = len(w_k)
    max_id = match_matrix.argmax(1)
    max_len = match_matrix.max(1)
    max_id[max_len == 0] = -1
146 147 148

    load_id = set(max_id)
    load_id.discard(-1)
G
Guanghua Yu 已提交
149
    not_load_weight_name = []
150 151 152 153
    for idx in range(len(weight_keys)):
        if idx not in load_id:
            not_load_weight_name.append(weight_keys[idx])

G
Guanghua Yu 已提交
154 155 156
    if len(not_load_weight_name) > 0:
        logger.info('{} in pretrained weight is not used in the model, '
                    'and its will not be loaded'.format(not_load_weight_name))
W
wangguanzhong 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
    matched_keys = {}
    result_state_dict = {}
    for model_id, weight_id in enumerate(max_id):
        if weight_id == -1:
            continue
        model_key = model_keys[model_id]
        weight_key = weight_keys[weight_id]
        weight_value = weight_state_dict[weight_key]
        model_value_shape = list(model_state_dict[model_key].shape)

        if list(weight_value.shape) != model_value_shape:
            logger.info(
                'The shape {} in pretrained weight {} is unmatched with '
                'the shape {} in model {}. And the weight {} will not be '
                'loaded'.format(weight_value.shape, weight_key,
                                model_value_shape, model_key, weight_key))
            continue

        assert model_key not in result_state_dict
        result_state_dict[model_key] = weight_value
        if weight_key in matched_keys:
            raise ValueError('Ambiguity weight {} loaded, it matches at least '
                             '{} and {} in the model'.format(
                                 weight_key, model_key, matched_keys[
                                     weight_key]))
        matched_keys[weight_key] = model_key
    return result_state_dict


K
Kaipeng Deng 已提交
186
def load_pretrain_weight(model, pretrain_weight):
Q
qingqing01 已提交
187
    if is_url(pretrain_weight):
K
Kaipeng Deng 已提交
188
        pretrain_weight = get_weights_path(pretrain_weight)
Q
qingqing01 已提交
189 190 191 192

    path = _strip_postfix(pretrain_weight)
    if not (os.path.isdir(path) or os.path.isfile(path) or
            os.path.exists(path + '.pdparams')):
193 194 195 196
        raise ValueError("Model pretrain path `{}` does not exists. "
                         "If you don't want to load pretrain model, "
                         "please delete `pretrain_weights` field in "
                         "config file.".format(path))
Q
qingqing01 已提交
197 198 199

    model_dict = model.state_dict()

K
Kaipeng Deng 已提交
200 201
    weights_path = path + '.pdparams'
    param_state_dict = paddle.load(weights_path)
W
wangguanzhong 已提交
202
    param_state_dict = match_state_dict(model_dict, param_state_dict)
K
Kaipeng Deng 已提交
203 204 205

    model.set_dict(param_state_dict)
    logger.info('Finish loading model weights: {}'.format(weights_path))
Q
qingqing01 已提交
206 207


S
shangliang Xu 已提交
208
def save_model(model, save_dir, save_name, last_epoch, optimizer=None):
Q
qingqing01 已提交
209 210
    """
    save model into disk.
211

Q
qingqing01 已提交
212 213 214 215 216 217 218 219
    Args:
        model (paddle.nn.Layer): the Layer instalce to save parameters.
        optimizer (paddle.optimizer.Optimizer): the Optimizer instance to
            save optimizer states.
        save_dir (str): the directory to be saved.
        save_name (str): the path to be saved.
        last_epoch (int): the epoch index.
    """
220 221
    if paddle.distributed.get_rank() != 0:
        return
Q
qingqing01 已提交
222 223 224
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)
    save_path = os.path.join(save_dir, save_name)
W
wangxinxin08 已提交
225 226 227 228 229 230
    if isinstance(model, nn.Layer):
        paddle.save(model.state_dict(), save_path + ".pdparams")
    else:
        assert isinstance(model,
                          dict), 'model is not a instance of nn.layer or dict'
        paddle.save(model, save_path + ".pdparams")
S
shangliang Xu 已提交
231 232 233 234
    if optimizer is not None:
        state_dict = optimizer.state_dict()
        state_dict['last_epoch'] = last_epoch
        paddle.save(state_dict, save_path + ".pdopt")
S
shangliang Xu 已提交
235
        logger.info("Save checkpoint: {}".format(save_dir))