tracker.py 19.6 KB
Newer Older
G
George Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import cv2
import glob
import paddle
import numpy as np

from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
G
George Ni 已提交
27
from ppdet.modeling.mot.utils import Detection, get_crops, scale_coords, clip_box
G
George Ni 已提交
28 29 30
from ppdet.modeling.mot.utils import Timer, load_det_results
from ppdet.modeling.mot import visualization as mot_vis

31
from ppdet.metrics import Metric, MOTMetric, KITTIMOTMetric
G
George Ni 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
import ppdet.utils.stats as stats

from .callbacks import Callback, ComposeCallback

from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)

__all__ = ['Tracker']


class Tracker(object):
    def __init__(self, cfg, mode='eval'):
        self.cfg = cfg
        assert mode.lower() in ['test', 'eval'], \
                "mode should be 'test' or 'eval'"
        self.mode = mode.lower()
        self.optimizer = None

        # build MOT data loader
        self.dataset = cfg['{}MOTDataset'.format(self.mode.capitalize())]

        # build model
        self.model = create(cfg.architecture)

        self.status = {}
        self.start_epoch = 0

        # initial default callbacks
        self._init_callbacks()

        # initial default metrics
        self._init_metrics()
        self._reset_metrics()

    def _init_callbacks(self):
        self._callbacks = []
        self._compose_callback = None

    def _init_metrics(self):
        if self.mode in ['test']:
            self._metrics = []
            return

        if self.cfg.metric == 'MOT':
            self._metrics = [MOTMetric(), ]
77 78
        elif self.cfg.metric == 'KITTI':
            self._metrics = [KITTIMOTMetric(), ]
G
George Ni 已提交
79
        else:
80
            logger.warning("Metric not support for metric type {}".format(
G
George Ni 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
                self.cfg.metric))
            self._metrics = []

    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def register_callbacks(self, callbacks):
        callbacks = [h for h in list(callbacks) if h is not None]
        for c in callbacks:
            assert isinstance(c, Callback), \
                    "metrics shoule be instances of subclass of Metric"
        self._callbacks.extend(callbacks)
        self._compose_callback = ComposeCallback(self._callbacks)

    def register_metrics(self, metrics):
        metrics = [m for m in list(metrics) if m is not None]
        for m in metrics:
            assert isinstance(m, Metric), \
                    "metrics shoule be instances of subclass of Metric"
        self._metrics.extend(metrics)

    def load_weights_jde(self, weights):
        load_weight(self.model, weights, self.optimizer)

    def load_weights_sde(self, det_weights, reid_weights):
        if self.model.detector:
108 109 110 111
            load_weight(self.model.detector, det_weights)
            load_weight(self.model.reid, reid_weights)
        else:
            load_weight(self.model.reid, reid_weights, self.optimizer)
G
George Ni 已提交
112 113 114 115 116

    def _eval_seq_jde(self,
                      dataloader,
                      save_dir=None,
                      show_image=False,
117 118
                      frame_rate=30,
                      draw_threshold=0):
G
George Ni 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
        if save_dir:
            if not os.path.exists(save_dir): os.makedirs(save_dir)
        tracker = self.model.tracker
        tracker.max_time_lost = int(frame_rate / 30.0 * tracker.track_buffer)

        timer = Timer()
        results = []
        frame_id = 0
        self.status['mode'] = 'track'
        self.model.eval()
        for step_id, data in enumerate(dataloader):
            self.status['step_id'] = step_id
            if frame_id % 40 == 0:
                logger.info('Processing frame {} ({:.2f} fps)'.format(
                    frame_id, 1. / max(1e-5, timer.average_time)))

            # forward
            timer.tic()
137 138
            pred_dets, pred_embs = self.model(data)
            online_targets = self.model.tracker.update(pred_dets, pred_embs)
G
George Ni 已提交
139 140

            online_tlwhs, online_ids = [], []
G
George Ni 已提交
141
            online_scores = []
G
George Ni 已提交
142 143 144
            for t in online_targets:
                tlwh = t.tlwh
                tid = t.track_id
G
George Ni 已提交
145
                tscore = t.score
146
                if tscore < draw_threshold: continue
147 148 149 150 151 152 153
                if tlwh[2] * tlwh[3] <= tracker.min_box_area: continue
                if tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
                        3] > tracker.vertical_ratio:
                    continue
                online_tlwhs.append(tlwh)
                online_ids.append(tid)
                online_scores.append(tscore)
G
George Ni 已提交
154 155 156
            timer.toc()

            # save results
G
George Ni 已提交
157 158
            results.append(
                (frame_id + 1, online_tlwhs, online_scores, online_ids))
G
George Ni 已提交
159
            self.save_results(data, frame_id, online_ids, online_tlwhs,
G
George Ni 已提交
160 161
                              online_scores, timer.average_time, show_image,
                              save_dir)
G
George Ni 已提交
162 163 164 165 166 167 168 169 170
            frame_id += 1

        return results, frame_id, timer.average_time, timer.calls

    def _eval_seq_sde(self,
                      dataloader,
                      save_dir=None,
                      show_image=False,
                      frame_rate=30,
171 172
                      det_file='',
                      draw_threshold=0):
G
George Ni 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
        if save_dir:
            if not os.path.exists(save_dir): os.makedirs(save_dir)
        tracker = self.model.tracker
        use_detector = False if not self.model.detector else True

        timer = Timer()
        results = []
        frame_id = 0
        self.status['mode'] = 'track'
        self.model.eval()
        self.model.reid.eval()
        if not use_detector:
            dets_list = load_det_results(det_file, len(dataloader))
            logger.info('Finish loading detection results file {}.'.format(
                det_file))

        for step_id, data in enumerate(dataloader):
            self.status['step_id'] = step_id
            if frame_id % 40 == 0:
                logger.info('Processing frame {} ({:.2f} fps)'.format(
                    frame_id, 1. / max(1e-5, timer.average_time)))

G
George Ni 已提交
195 196 197 198
            ori_image = data['ori_image']
            input_shape = data['image'].shape[2:]
            im_shape = data['im_shape']
            scale_factor = data['scale_factor']
G
George Ni 已提交
199 200 201 202 203
            timer.tic()
            if not use_detector:
                dets = dets_list[frame_id]
                bbox_tlwh = paddle.to_tensor(dets['bbox'], dtype='float32')
                pred_scores = paddle.to_tensor(dets['score'], dtype='float32')
204
                if pred_scores < draw_threshold: continue
G
George Ni 已提交
205 206 207 208 209 210 211 212
                if bbox_tlwh.shape[0] > 0:
                    pred_bboxes = paddle.concat(
                        (bbox_tlwh[:, 0:2],
                         bbox_tlwh[:, 2:4] + bbox_tlwh[:, 0:2]),
                        axis=1)
                else:
                    pred_bboxes = []
                    pred_scores = []
G
George Ni 已提交
213 214 215 216 217 218 219 220 221
            else:
                outs = self.model.detector(data)
                if outs['bbox_num'] > 0:
                    pred_bboxes = scale_coords(outs['bbox'][:, 2:], input_shape,
                                               im_shape, scale_factor)
                    pred_scores = outs['bbox'][:, 1:2]
                else:
                    pred_bboxes = []
                    pred_scores = []
G
George Ni 已提交
222

G
George Ni 已提交
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
            pred_bboxes = clip_box(pred_bboxes, input_shape, im_shape,
                                   scale_factor)
            bbox_tlwh = paddle.concat(
                (pred_bboxes[:, 0:2],
                 pred_bboxes[:, 2:4] - pred_bboxes[:, 0:2] + 1),
                axis=1)

            crops, pred_scores = get_crops(
                pred_bboxes, ori_image, pred_scores, w=64, h=192)
            crops = paddle.to_tensor(crops)
            pred_scores = paddle.to_tensor(pred_scores)

            data.update({'crops': crops})
            features = self.model(data)
            features = features.numpy()
            detections = [
                Detection(tlwh, score, feat)
                for tlwh, score, feat in zip(bbox_tlwh, pred_scores, features)
            ]
242 243
            self.model.tracker.predict()
            online_targets = self.model.tracker.update(detections)
G
George Ni 已提交
244 245

            online_tlwhs = []
G
George Ni 已提交
246
            online_scores = []
G
George Ni 已提交
247 248 249 250
            online_ids = []
            for track in online_targets:
                if not track.is_confirmed() or track.time_since_update > 1:
                    continue
G
George Ni 已提交
251 252 253
                online_tlwhs.append(track.to_tlwh())
                online_scores.append(1.0)
                online_ids.append(track.track_id)
G
George Ni 已提交
254 255 256
            timer.toc()

            # save results
G
George Ni 已提交
257 258
            results.append(
                (frame_id + 1, online_tlwhs, online_scores, online_ids))
G
George Ni 已提交
259
            self.save_results(data, frame_id, online_ids, online_tlwhs,
G
George Ni 已提交
260 261
                              online_scores, timer.average_time, show_image,
                              save_dir)
G
George Ni 已提交
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
            frame_id += 1

        return results, frame_id, timer.average_time, timer.calls

    def mot_evaluate(self,
                     data_root,
                     seqs,
                     output_dir,
                     data_type='mot',
                     model_type='JDE',
                     save_images=False,
                     save_videos=False,
                     show_image=False,
                     det_results_dir=''):
        if not os.path.exists(output_dir): os.makedirs(output_dir)
        result_root = os.path.join(output_dir, 'mot_results')
        if not os.path.exists(result_root): os.makedirs(result_root)
        assert data_type in ['mot', 'kitti'], \
            "data_type should be 'mot' or 'kitti'"
        assert model_type in ['JDE', 'DeepSORT', 'FairMOT'], \
            "model_type should be 'JDE', 'DeepSORT' or 'FairMOT'"

        # run tracking
285

G
George Ni 已提交
286 287 288
        n_frame = 0
        timer_avgs, timer_calls = [], []
        for seq in seqs:
G
George Ni 已提交
289 290 291 292 293 294 295 296
            if not os.path.isdir(os.path.join(data_root, seq)):
                continue
            infer_dir = os.path.join(data_root, seq, 'img1')
            seqinfo = os.path.join(data_root, seq, 'seqinfo.ini')
            if not os.path.exists(seqinfo) or not os.path.exists(
                    infer_dir) or not os.path.isdir(infer_dir):
                continue

G
George Ni 已提交
297 298 299 300 301 302 303 304 305 306
            save_dir = os.path.join(output_dir, 'mot_outputs',
                                    seq) if save_images or save_videos else None
            logger.info('start seq: {}'.format(seq))

            images = self.get_infer_images(infer_dir)
            self.dataset.set_images(images)

            dataloader = create('EvalMOTReader')(self.dataset, 0)

            result_filename = os.path.join(result_root, '{}.txt'.format(seq))
G
George Ni 已提交
307
            meta_info = open(seqinfo).read()
G
George Ni 已提交
308 309
            frame_rate = int(meta_info[meta_info.find('frameRate') + 10:
                                       meta_info.find('\nseqLength')])
G
George Ni 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
            with paddle.no_grad():
                if model_type in ['JDE', 'FairMOT']:
                    results, nf, ta, tc = self._eval_seq_jde(
                        dataloader,
                        save_dir=save_dir,
                        show_image=show_image,
                        frame_rate=frame_rate)
                elif model_type in ['DeepSORT']:
                    results, nf, ta, tc = self._eval_seq_sde(
                        dataloader,
                        save_dir=save_dir,
                        show_image=show_image,
                        frame_rate=frame_rate,
                        det_file=os.path.join(det_results_dir,
                                              '{}.txt'.format(seq)))
                else:
                    raise ValueError(model_type)
G
George Ni 已提交
327 328 329 330 331 332 333

            self.write_mot_results(result_filename, results, data_type)
            n_frame += nf
            timer_avgs.append(ta)
            timer_calls.append(tc)

            if save_videos:
G
George Ni 已提交
334 335
                output_video_path = os.path.join(save_dir, '..',
                                                 '{}_vis.mp4'.format(seq))
F
Feng Ni 已提交
336
                cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg {}'.format(
G
George Ni 已提交
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
                    save_dir, output_video_path)
                os.system(cmd_str)
                logger.info('Save video in {}.'.format(output_video_path))

            logger.info('Evaluate seq: {}'.format(seq))
            # update metrics
            for metric in self._metrics:
                metric.update(data_root, seq, data_type, result_root,
                              result_filename)

        timer_avgs = np.asarray(timer_avgs)
        timer_calls = np.asarray(timer_calls)
        all_time = np.dot(timer_avgs, timer_calls)
        avg_time = all_time / np.sum(timer_calls)
        logger.info('Time elapsed: {:.2f} seconds, FPS: {:.2f}'.format(
            all_time, 1.0 / avg_time))

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

    def get_infer_images(self, infer_dir):
        assert infer_dir is None or os.path.isdir(infer_dir), \
            "{} is not a directory".format(infer_dir)
        images = set()
        assert os.path.isdir(infer_dir), \
            "infer_dir {} is not a directory".format(infer_dir)
        exts = ['jpg', 'jpeg', 'png', 'bmp']
        exts += [ext.upper() for ext in exts]
        for ext in exts:
            images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
        images = list(images)
        images.sort()
        assert len(images) > 0, "no image found in {}".format(infer_dir)
        logger.info("Found {} inference images in total.".format(len(images)))
        return images

    def mot_predict(self,
                    video_file,
379
                    frame_rate,
G
George Ni 已提交
380
                    image_dir,
G
George Ni 已提交
381 382 383 384 385 386
                    output_dir,
                    data_type='mot',
                    model_type='JDE',
                    save_images=False,
                    save_videos=True,
                    show_image=False,
387 388
                    det_results_dir='',
                    draw_threshold=0.5):
G
George Ni 已提交
389 390 391 392 393 394 395
        assert video_file is not None or image_dir is not None, \
            "--video_file or --image_dir should be set."
        assert video_file is None or os.path.isfile(video_file), \
                "{} is not a file".format(video_file)
        assert image_dir is None or os.path.isdir(image_dir), \
                "{} is not a directory".format(image_dir)

G
George Ni 已提交
396 397 398 399 400 401 402 403
        if not os.path.exists(output_dir): os.makedirs(output_dir)
        result_root = os.path.join(output_dir, 'mot_results')
        if not os.path.exists(result_root): os.makedirs(result_root)
        assert data_type in ['mot', 'kitti'], \
            "data_type should be 'mot' or 'kitti'"
        assert model_type in ['JDE', 'DeepSORT', 'FairMOT'], \
            "model_type should be 'JDE', 'DeepSORT' or 'FairMOT'"

G
George Ni 已提交
404 405 406
        # run tracking        
        if video_file:
            seq = video_file.split('/')[-1].split('.')[0]
407
            self.dataset.set_video(video_file, frame_rate)
G
George Ni 已提交
408 409 410 411 412 413 414 415 416 417 418 419 420
            logger.info('Starting tracking video {}'.format(video_file))
        elif image_dir:
            seq = image_dir.split('/')[-1].split('.')[0]
            images = [
                '{}/{}'.format(image_dir, x) for x in os.listdir(image_dir)
            ]
            images.sort()
            self.dataset.set_images(images)
            logger.info('Starting tracking folder {}, found {} images'.format(
                image_dir, len(images)))
        else:
            raise ValueError('--video_file or --image_dir should be set.')

G
George Ni 已提交
421 422 423 424 425
        save_dir = os.path.join(output_dir, 'mot_outputs',
                                seq) if save_images or save_videos else None

        dataloader = create('TestMOTReader')(self.dataset, 0)
        result_filename = os.path.join(result_root, '{}.txt'.format(seq))
426 427
        if frame_rate == -1:
            frame_rate = self.dataset.frame_rate
G
George Ni 已提交
428

G
George Ni 已提交
429 430 431 432 433 434
        with paddle.no_grad():
            if model_type in ['JDE', 'FairMOT']:
                results, nf, ta, tc = self._eval_seq_jde(
                    dataloader,
                    save_dir=save_dir,
                    show_image=show_image,
435 436
                    frame_rate=frame_rate,
                    draw_threshold=draw_threshold)
G
George Ni 已提交
437 438 439 440 441 442 443
            elif model_type in ['DeepSORT']:
                results, nf, ta, tc = self._eval_seq_sde(
                    dataloader,
                    save_dir=save_dir,
                    show_image=show_image,
                    frame_rate=frame_rate,
                    det_file=os.path.join(det_results_dir,
444 445
                                          '{}.txt'.format(seq)),
                    draw_threshold=draw_threshold)
G
George Ni 已提交
446 447
            else:
                raise ValueError(model_type)
G
George Ni 已提交
448

G
George Ni 已提交
449 450
        self.write_mot_results(result_filename, results, data_type)

G
George Ni 已提交
451
        if save_videos:
G
George Ni 已提交
452 453
            output_video_path = os.path.join(save_dir, '..',
                                             '{}_vis.mp4'.format(seq))
F
Feng Ni 已提交
454
            cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg {}'.format(
G
George Ni 已提交
455 456 457 458 459 460
                save_dir, output_video_path)
            os.system(cmd_str)
            logger.info('Save video in {}'.format(output_video_path))

    def write_mot_results(self, filename, results, data_type='mot'):
        if data_type in ['mot', 'mcmot', 'lab']:
G
George Ni 已提交
461
            save_format = '{frame},{id},{x1},{y1},{w},{h},{score},-1,-1,-1\n'
G
George Ni 已提交
462
        elif data_type == 'kitti':
463
            save_format = '{frame} {id} car 0 0 -10 {x1} {y1} {x2} {y2} -10 -10 -10 -1000 -1000 -1000 -10\n'
G
George Ni 已提交
464 465 466 467
        else:
            raise ValueError(data_type)

        with open(filename, 'w') as f:
G
George Ni 已提交
468
            for frame_id, tlwhs, tscores, track_ids in results:
G
George Ni 已提交
469 470
                if data_type == 'kitti':
                    frame_id -= 1
G
George Ni 已提交
471
                for tlwh, score, track_id in zip(tlwhs, tscores, track_ids):
G
George Ni 已提交
472 473 474 475 476 477 478 479 480 481 482 483
                    if track_id < 0:
                        continue
                    x1, y1, w, h = tlwh
                    x2, y2 = x1 + w, y1 + h
                    line = save_format.format(
                        frame=frame_id,
                        id=track_id,
                        x1=x1,
                        y1=y1,
                        x2=x2,
                        y2=y2,
                        w=w,
G
George Ni 已提交
484 485
                        h=h,
                        score=score)
G
George Ni 已提交
486 487 488 489
                    f.write(line)
        logger.info('MOT results save in {}'.format(filename))

    def save_results(self, data, frame_id, online_ids, online_tlwhs,
G
George Ni 已提交
490
                     online_scores, average_time, show_image, save_dir):
G
George Ni 已提交
491 492 493 494 495 496 497
        if show_image or save_dir is not None:
            assert 'ori_image' in data
            img0 = data['ori_image'].numpy()[0]
            online_im = mot_vis.plot_tracking(
                img0,
                online_tlwhs,
                online_ids,
G
George Ni 已提交
498
                online_scores,
G
George Ni 已提交
499 500 501 502 503 504 505 506
                frame_id=frame_id,
                fps=1. / average_time)
        if show_image:
            cv2.imshow('online_im', online_im)
        if save_dir is not None:
            cv2.imwrite(
                os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)),
                online_im)