context_project.h 12.8 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/framework/eigen.h"
#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/tensor.h"
#include "paddle/operators/math/im2col.h"

namespace paddle {
namespace operators {
namespace math {

template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
/*
C
chengduoZH 已提交
30 31 32 33
 * \brief Context projection concatenate features in adjacent time steps in
 * a sequence. The i-th row of the output is the concatenation of
 * context_length rows of the input. The context_length rows are the
 * consecutive rows from the i+shift_start row.
C
sss  
chengduoZH 已提交
34
 * ContextProjectGradFunctor is the inverse process of ContextProjectFunctor.
C
chengduoZH 已提交
35

C
chengduoZH 已提交
36
 * \param in            Input data.
C
chengduoZH 已提交
37
 * \param Shape         The shape of Input data,
C
chengduoZH 已提交
38
 *                      [minibatch, input_hidden_size].
C
chengduoZH 已提交
39
 *
C
chengduoZH 已提交
40
 * \param padding_data  Padding data.
C
chengduoZH 已提交
41
 * \param Shape         The shape of Padding data,
C
chengduoZH 已提交
42
 *                      [up_pad + down_pad, input_hidden_size].
C
chengduoZH 已提交
43
 *
C
chengduoZH 已提交
44
 * \param col           Col data.
C
chengduoZH 已提交
45
 * \param Shape         The shape of Col data,
C
chengduoZH 已提交
46
 *                      [minibatch, context_length * input_hidden_size].
C
chengduoZH 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
 *
 * For a mini-batch of 2 variable lengths sentences, containing 3, and 1
 * time-steps:
 *
 * Assumed input (X) is a [4, M, N] float LoDTensor, and X->lod()[0] = [0, 3,
 * 4].
 * Besides, for the sake of simplicity, we assume M=1 and N=2.
 *
 * X = [[a1, a2;
 *       b1, b2;
 *       c1, c2]
 *      [d1, d2]]
 *
 * This is to say that input (X) has 4 words and the dimension of each word
 * representation is 2.
 *
 * - Case1:
 * If context_start is -1 and padding_trainable is false, we use zero to pad
 * instead of learned weight to pad,
 * and the context_lenth is 3, the output (Out) is:
 *
 * Out =[[0,  0,  a1, a2, b1, b2;
 *        a1, a2, b1, b2, c1, c2;
 *        b1, b2, c1, c2, 0,  0 ]
 *       [0,  0,  d1, d2, 0,  0 ]]
 *
 * - Case2:
 * If context_start is -1 and padding_trainable is true, we use learned weight
 * to pad,
 * and the context_lenth is 3, the output (Out) is:
 *
 * Out = [[w1, w2, a1, a2, b1, b2;
 *         a1, a2, b1, b2, c1, c2;
 *         b1, b2, c1, c2, w3, w4]
 *        [w1, w2, d1, d2, w3, w4]]
C
chengduoZH 已提交
82 83 84 85
 *
 */

template <typename Place, typename T>
C
chengduoZH 已提交
86
class ContextProjectFunctor {
C
chengduoZH 已提交
87 88
 public:
  void operator()(const platform::DeviceContext& context,
C
sss  
chengduoZH 已提交
89 90 91 92
                  const framework::LoDTensor& in,
                  const framework::Tensor& padding_data, framework::Tensor& col,
                  bool padding_trainable, int context_start, int context_length,
                  int context_stride, int up_pad, int down_pad) {
C
chengduoZH 已提交
93
    auto lod_level_0 = in.lod()[0];
C
chengduoZH 已提交
94 95 96 97

    paddle::operators::math::Im2ColFunctor<
        paddle::operators::math::ColFormat::kOCF, Place, float>
        im2col_ocf;
C
sss  
chengduoZH 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

    int input_row_begin, input_row_end;
    int sequence_height, sequence_width;
    sequence_width = in.dims()[1];

    for (int i = 0; i < static_cast<int>(lod_level_0.size()) - 1; ++i) {
      input_row_begin = (context_start > 0)
                            ? static_cast<int>(lod_level_0[i]) + context_start
                            : static_cast<int>(lod_level_0[i]);
      input_row_end = static_cast<int>(lod_level_0[i + 1]);

      framework::Tensor out_t = col.Slice(static_cast<int>(lod_level_0[i]),
                                          static_cast<int>(lod_level_0[i + 1]));

      sequence_height = static_cast<int>(out_t.dims()[0]);

      if (input_row_begin < input_row_end) {
        framework::Tensor in_t = in.Slice(input_row_begin, input_row_end);

        std::vector<int64_t> output_shape(
            {sequence_height, 1, 1, context_length,
             sequence_width});  // output_height, output_width,
        // input_channels, filter_height, filter_width

        out_t.Resize(framework::make_ddim(output_shape));

        std::vector<int64_t> input_shape(
            {1, input_row_end - input_row_begin,
             sequence_width});  // input_channels, input_height, input_width
        in_t.Resize(framework::make_ddim(input_shape));

        im2col_ocf(context, in_t, out_t,
                   /*stride_height*/ context_stride, /*stride_width*/ 1, up_pad,
                   down_pad, 0, 0);
        out_t.Resize({sequence_height, context_length * sequence_width});
      }
    }
    if (padding_trainable) {
      for (int i = 0; i < static_cast<int>(lod_level_0.size()) - 1; ++i) {
        framework::Tensor out_t =
            col.Slice(static_cast<int>(lod_level_0[i]),
                      static_cast<int>(lod_level_0[i + 1]));

        sequence_height = static_cast<int>(out_t.dims()[0]);

        // add up trainable data
        out_t.Resize({sequence_height * context_length, sequence_width});

        if (up_pad > 0) {  // add up pad
          int padding_rows = std::min(
              up_pad, static_cast<int>(lod_level_0[i + 1] - lod_level_0[i]));

          for (int k = 0; k < padding_rows; ++k) {
            int padding_size =
                k + context_length < up_pad ? context_length : up_pad - k;
            framework::Tensor out_t_sub = out_t.Slice(
                k * context_length, k * context_length + padding_size);
            framework::Tensor w_sub = padding_data.Slice(k, k + padding_size);
            // in this block, using EigenVector<T>::Flatten is ok too.
            auto out_t_sub_e = EigenMatrix<T>::From(out_t_sub);
            auto w_sub_e = EigenMatrix<T>::From(w_sub);
            out_t_sub_e.device(*context.GetEigenDevice<Place>()) = w_sub_e;
          }
        }
        if (down_pad > 0) {  // add down pad
          int down_pad_begin_row =
              std::max(0,
                       (sequence_height - context_start - context_length) + 1) +
              1;
          int padding_begin = std::max(0, context_start - sequence_height);
          int padding_size =
              sequence_height - context_start >= context_length
                  ? 1
                  : context_length - (sequence_height - context_start);
          if (context_start >= sequence_height) padding_size = context_length;
          int padding_idx = padding_begin;
          for (int t = 0; t + down_pad_begin_row <= sequence_height;
               ++t, ++padding_size) {
            if (context_start >= sequence_height) padding_size = context_length;
            if (padding_size > context_length) {
              padding_size = context_length;
              padding_idx++;
            }
            if (padding_begin > 0 || sequence_height == context_start)
              padding_idx = padding_begin + t;
            framework::Tensor out_t_sub = out_t.Slice(
                (down_pad_begin_row + t) * context_length - padding_size,
                (down_pad_begin_row + t) * context_length);
            framework::Tensor w_sub = padding_data.Slice(
                up_pad + padding_idx, up_pad + padding_idx + padding_size);
            auto out_t_sub_e = EigenMatrix<T>::From(out_t_sub);
            auto w_sub_e = EigenMatrix<T>::From(w_sub);
            out_t_sub_e.device(*context.GetEigenDevice<Place>()) = w_sub_e;
          }
        }
        out_t.Resize({sequence_height, context_length * sequence_width});
      }
    }
  }
};

template <typename Place, typename T>
class ContextProjectGradFunctor {
 public:
  void operator()(const platform::DeviceContext& context,
                  framework::LoDTensor& in, framework::Tensor& padding_data,
                  framework::Tensor& col, bool padding_trainable,
                  int context_start, int context_length, int context_stride,
                  int up_pad, int down_pad, bool input_grad, bool pad_grad) {
    auto lod_level_0 = in.lod()[0];

C
chengduoZH 已提交
209 210 211
    paddle::operators::math::Col2ImFunctor<
        paddle::operators::math::ColFormat::kOCF, Place, float>
        col2im_ocf;
C
chengduoZH 已提交
212 213 214

    int input_row_begin, input_row_end;
    int sequence_height, sequence_width;
C
chengduoZH 已提交
215 216
    sequence_width = in.dims()[1];

C
sss  
chengduoZH 已提交
217
    if (input_grad) {
C
chengduoZH 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
      for (int i = 0; i < static_cast<int>(lod_level_0.size()) - 1; ++i) {
        input_row_begin = (context_start > 0)
                              ? static_cast<int>(lod_level_0[i]) + context_start
                              : static_cast<int>(lod_level_0[i]);
        input_row_end = static_cast<int>(lod_level_0[i + 1]);

        framework::Tensor out_t =
            col.Slice(static_cast<int>(lod_level_0[i]),
                      static_cast<int>(lod_level_0[i + 1]));

        sequence_height = static_cast<int>(out_t.dims()[0]);

        if (input_row_begin < input_row_end) {
          framework::Tensor in_t = in.Slice(input_row_begin, input_row_end);

          std::vector<int64_t> output_shape(
              {sequence_height, 1, 1, context_length,
               sequence_width});  // output_height, output_width,
          // input_channels, filter_height, filter_width

          out_t.Resize(framework::make_ddim(output_shape));

          std::vector<int64_t> input_shape(
              {1, input_row_end - input_row_begin,
               sequence_width});  // input_channels, input_height, input_width
          in_t.Resize(framework::make_ddim(input_shape));

C
sss  
chengduoZH 已提交
245 246 247
          col2im_ocf(context, in_t, out_t,
                     /*stride_height*/ context_stride, /*stride_width*/ 1,
                     up_pad, down_pad, 0, 0);
C
chengduoZH 已提交
248
          out_t.Resize({sequence_height, context_length * sequence_width});
C
chengduoZH 已提交
249
        }
C
chengduoZH 已提交
250
      }
C
chengduoZH 已提交
251
    }
C
sss  
chengduoZH 已提交
252
    if (pad_grad) {
C
chengduoZH 已提交
253
      if (padding_trainable) {
C
chengduoZH 已提交
254 255 256 257 258 259
        for (int i = 0; i < static_cast<int>(lod_level_0.size()) - 1; ++i) {
          framework::Tensor out_t =
              col.Slice(static_cast<int>(lod_level_0[i]),
                        static_cast<int>(lod_level_0[i + 1]));

          sequence_height = static_cast<int>(out_t.dims()[0]);
C
chengduoZH 已提交
260
          out_t.Resize({sequence_height * context_length, sequence_width});
C
chengduoZH 已提交
261

C
sss  
chengduoZH 已提交
262
          if (up_pad > 0) {
C
chengduoZH 已提交
263 264 265 266 267 268 269 270 271 272 273 274
            int padding_rows = std::min(
                up_pad, static_cast<int>(lod_level_0[i + 1] - lod_level_0[i]));

            for (int k = 0; k < padding_rows; ++k) {
              int padding_size =
                  k + context_length < up_pad ? context_length : up_pad - k;
              framework::Tensor out_t_sub = out_t.Slice(
                  k * context_length, k * context_length + padding_size);
              framework::Tensor w_sub = padding_data.Slice(k, k + padding_size);
              // in this block, using EigenVector<T>::Flatten is ok too.
              auto out_t_sub_e = EigenMatrix<T>::From(out_t_sub);
              auto w_sub_e = EigenMatrix<T>::From(w_sub);
C
sss  
chengduoZH 已提交
275 276
              w_sub_e.device(*context.GetEigenDevice<Place>()) =
                  w_sub_e + out_t_sub_e;
C
chengduoZH 已提交
277
            }
C
chengduoZH 已提交
278
          }
C
sss  
chengduoZH 已提交
279
          if (down_pad > 0) {
C
chengduoZH 已提交
280 281 282 283 284 285 286 287 288
            int down_pad_begin_row =
                std::max(
                    0, (sequence_height - context_start - context_length) + 1) +
                1;
            int padding_begin = std::max(0, context_start - sequence_height);
            int padding_size =
                sequence_height - context_start >= context_length
                    ? 1
                    : context_length - (sequence_height - context_start);
C
chengduoZH 已提交
289
            if (context_start >= sequence_height) padding_size = context_length;
C
chengduoZH 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
            int padding_idx = padding_begin;
            for (int t = 0; t + down_pad_begin_row <= sequence_height;
                 ++t, ++padding_size) {
              if (context_start >= sequence_height)
                padding_size = context_length;
              if (padding_size > context_length) {
                padding_size = context_length;
                padding_idx++;
              }
              if (padding_begin > 0 || sequence_height == context_start)
                padding_idx = padding_begin + t;
              framework::Tensor out_t_sub = out_t.Slice(
                  (down_pad_begin_row + t) * context_length - padding_size,
                  (down_pad_begin_row + t) * context_length);
              framework::Tensor w_sub = padding_data.Slice(
                  up_pad + padding_idx, up_pad + padding_idx + padding_size);
              auto out_t_sub_e = EigenMatrix<T>::From(out_t_sub);
              auto w_sub_e = EigenMatrix<T>::From(w_sub);
C
sss  
chengduoZH 已提交
308 309
              w_sub_e.device(*context.GetEigenDevice<Place>()) =
                  w_sub_e + out_t_sub_e;
C
chengduoZH 已提交
310 311
            }
          }
C
chengduoZH 已提交
312
          out_t.Resize({sequence_height, context_length * sequence_width});
C
chengduoZH 已提交
313 314 315 316 317 318 319 320 321
        }
      }
    }
  }
};

}  // namespace math
}  // namespace operators
}  // namespace paddle