inference.py 6.5 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
Y
Yu Yang 已提交
14 15
import numpy
import collections
Y
Yu Yang 已提交
16
import topology
Y
Yu Yang 已提交
17
import minibatch
18
import cPickle
Y
Yu Yang 已提交
19

Y
Yu Yang 已提交
20
__all__ = ['infer', 'Inference']
Y
Yu Yang 已提交
21 22


Y
Yu Yang 已提交
23
class Inference(object):
Q
qijun 已提交
24 25 26
    """
    Inference combines neural network output and parameters together
    to do inference.
X
xuwei06 已提交
27

Y
Yu Yang 已提交
28
    ..  code-block:: python
X
xuwei06 已提交
29

Y
Yu Yang 已提交
30 31 32 33
        inferer = Inference(output_layer=prediction, parameters=parameters)
        for data_batch in batches:
            print inferer.infer(data_batch)

Q
qijun 已提交
34

Y
Yu Yang 已提交
35
    :param output_layer: The neural network that should be inferenced.
Q
qijun 已提交
36 37 38 39 40
    :type output_layer: paddle.v2.config_base.Layer or the sequence
                        of paddle.v2.config_base.Layer
    :param parameters: The parameters dictionary.
    :type parameters: paddle.v2.parameters.Parameters
    """
Q
qijun 已提交
41

42
    def __init__(self, parameters, output_layer=None, fileobj=None):
Y
Yu Yang 已提交
43
        import py_paddle.swig_paddle as api
44 45

        if output_layer is not None:
46 47 48 49
            topo = topology.Topology(output_layer)
            gm = api.GradientMachine.createFromConfigProto(
                topo.proto(), api.CREATE_MODE_TESTING, [api.PARAMETER_VALUE])
            self.__data_types__ = topo.data_type()
50 51 52 53 54 55 56 57 58
        elif fileobj is not None:
            tmp = cPickle.load(fileobj)
            gm = api.GradientMachine.createByConfigProtoStr(
                tmp['protobin'], api.CREATE_MODE_TESTING,
                [api.PARAMETER_VALUE])
            self.__data_types__ = tmp['data_type']
        else:
            raise ValueError("Either output_layer or fileobj must be set")

Y
Yu Yang 已提交
59 60 61
        for param in gm.getParameters():
            val = param.getBuf(api.PARAMETER_VALUE)
            name = param.getName()
Y
Yu Yang 已提交
62 63
            assert isinstance(val, api.Vector)
            val.copyFromNumpyArray(parameters.get(name).flatten())
D
dangqingqing 已提交
64 65 66 67 68 69 70
            # the setValueUpdated function is called in randomize, zeroMem,
            # load function in paddle/parameter/Parameter.cpp. But in the
            # inference mode, the setValueUpdated is never called, it will
            # cause the parameter will not be dispatched
            # in MultiGradientMachine for multi-GPU. So setValueUpdated is
            # called here, but it's better to call this function in one place.
            param.setValueUpdated()
Y
Yu Yang 已提交
71 72
        self.__gradient_machine__ = gm

Y
Yu Yang 已提交
73
    def iter_infer(self, input, feeding=None):
Y
Yu Yang 已提交
74
        from data_feeder import DataFeeder
Y
Yu Yang 已提交
75
        feeder = DataFeeder(self.__data_types__, feeding)
Y
Yu Yang 已提交
76
        batch_size = len(input)
Y
Yu Yang 已提交
77

Y
Yu Yang 已提交
78 79 80
        def __reader_impl__():
            for each_sample in input:
                yield each_sample
Y
Yu Yang 已提交
81

Y
Yu Yang 已提交
82
        reader = minibatch.batch(__reader_impl__, batch_size=batch_size)
Y
Yu Yang 已提交
83

Y
Yu Yang 已提交
84 85
        self.__gradient_machine__.start()
        for data_batch in reader():
Y
Yu Yang 已提交
86
            yield self.__gradient_machine__.forwardTest(feeder(data_batch))
Y
Yu Yang 已提交
87 88 89
        self.__gradient_machine__.finish()

    def iter_infer_field(self, field, **kwargs):
T
Tao Luo 已提交
90 91 92
        if not isinstance(field, list) and not isinstance(field, tuple):
            field = [field]

T
Tao Luo 已提交
93 94 95 96 97
        for result in self.iter_infer(**kwargs):
            for each_result in result:
                item = [each_result[each_field] for each_field in field]
                yield item

C
caoying03 已提交
98
    def infer(self, input, field='value', flatten_result=True, **kwargs):
Y
Yu Yang 已提交
99 100 101 102 103
        """
        Infer a data by model.
        :param input: input data batch. Should be python iterable object.
        :param field: output field.
        """
T
Tao Luo 已提交
104
        retv = None
Y
Yu Yang 已提交
105
        kwargs['input'] = input
T
Tao Luo 已提交
106 107
        for result in self.iter_infer_field(field=field, **kwargs):
            if retv is None:
L
Luo Tao 已提交
108
                retv = [[] for i in xrange(len(result))]
T
Tao Luo 已提交
109 110
            for i, item in enumerate(result):
                retv[i].append(item)
C
caoying03 已提交
111

112 113 114
        if retv == None:
            return []

C
caoying03 已提交
115 116 117
        if flatten_result:
            retv = [numpy.concatenate(out) for out in retv]

T
Tao Luo 已提交
118 119 120 121
        if len(retv) == 1:
            return retv[0]
        else:
            return retv
Y
Yu Yang 已提交
122 123


124
def infer(output_layer, parameters, input, feeding=None, field='value'):
Y
Yu Yang 已提交
125 126 127 128
    """
    Infer a neural network by given neural network output and parameters.  The
    user should pass either a batch of input data or reader method.

L
Luo Tao 已提交
129
    Example usage for sinlge output_layer:
Y
Yu Yang 已提交
130 131 132

    ..  code-block:: python

X
xuwei06 已提交
133 134
        result = paddle.infer(output_layer=prediction,
                              parameters=parameters,
135
                              input=SomeData)
Y
Yu Yang 已提交
136 137
        print result

L
Luo Tao 已提交
138
    Example usage for multiple outout_layers and fields:
139 140 141

    ..  code-block:: python

X
xuwei06 已提交
142 143
        result = paddle.infer(output_layer=[prediction1, prediction2],
                              parameters=parameters,
144 145 146 147
                              input=SomeData,
                              field=[id, value]])
        print result

148
    :param output_layer: output of the neural network that would be inferred
X
xuwei06 已提交
149
    :type output_layer: paddle.v2.config_base.Layer or a list of
150
                        paddle.v2.config_base.Layer
Y
Yu Yang 已提交
151 152 153 154 155
    :param parameters: parameters of the neural network.
    :type parameters: paddle.v2.parameters.Parameters
    :param input: input data batch. Should be a python iterable object, and each
                  element is the data batch.
    :type input: collections.Iterable
156
    :param feeding: Reader dictionary. Default could generate from input
Y
Yu Yang 已提交
157
                        value.
X
xuwei06 已提交
158 159
    :param field: The prediction field. It should in [`value`, `id`, `prob`].
                  `value` and `prob` mean return the prediction probabilities,
L
Luo Tao 已提交
160
                  `id` means return the prediction labels. Default is `value`.
X
xuwei06 已提交
161
                  Note that `prob` only used when output_layer is beam_search
L
Luo Tao 已提交
162
                  or max_id.
Y
Yu Yang 已提交
163
    :type field: str
X
xuwei06 已提交
164 165
    :return: The prediction result. If there are multiple outout_layers and fields,
             the return order is outout_layer1.field1, outout_layer2.field1, ...,
L
Luo Tao 已提交
166
             outout_layer1.field2, outout_layer2.field2 ...
Y
Yu Yang 已提交
167 168 169
    :rtype: numpy.ndarray
    """

170 171
    inferer = Inference(output_layer=output_layer, parameters=parameters)
    return inferer.infer(field=field, input=input, feeding=feeding)