image_multiproc.py 9.7 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
14 15 16 17
import os, sys
import numpy as np
from PIL import Image
from cStringIO import StringIO
18
import multiprocessing
D
dangqingqing 已提交
19 20
import functools
import itertools
21 22 23

from paddle.utils.image_util import *
from paddle.trainer.config_parser import logger
24

25 26 27
try:
    import cv2
except ImportError:
28
    logger.warning("OpenCV2 is not installed, using PIL to process")
29
    cv2 = None
30

D
dangqingqing 已提交
31
__all__ = ["CvTransformer", "PILTransformer", "MultiProcessImageTransformer"]
32

D
dangqingqing 已提交
33 34

class CvTransformer(ImageTransformer):
35
    """
D
dangqingqing 已提交
36
    CvTransformer used python-opencv to process image.
37 38
    """

39 40 41 42 43 44 45 46 47
    def __init__(
            self,
            min_size=None,
            crop_size=None,
            transpose=(2, 0, 1),  # transpose to C * H * W
            channel_swap=None,
            mean=None,
            is_train=True,
            is_color=True):
48 49 50 51 52
        ImageTransformer.__init__(self, transpose, channel_swap, mean, is_color)
        self.min_size = min_size
        self.crop_size = crop_size
        self.is_train = is_train

53
    def resize(self, im, min_size):
54
        row, col = im.shape[:2]
55 56 57
        new_row, new_col = min_size, min_size
        if row > col:
            new_row = min_size * row / col
58
        else:
59 60
            new_col = min_size * col / row
        im = cv2.resize(im, (new_row, new_col), interpolation=cv2.INTER_CUBIC)
61 62
        return im

63
    def crop_and_flip(self, im):
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
        """
        Return cropped image.
        The size of the cropped image is inner_size * inner_size.
        im: (H x W x K) ndarrays
        """
        row, col = im.shape[:2]
        start_h, start_w = 0, 0
        if self.is_train:
            start_h = np.random.randint(0, row - self.crop_size + 1)
            start_w = np.random.randint(0, col - self.crop_size + 1)
        else:
            start_h = (row - self.crop_size) / 2
            start_w = (col - self.crop_size) / 2
        end_h, end_w = start_h + self.crop_size, start_w + self.crop_size
        if self.is_color:
            im = im[start_h:end_h, start_w:end_w, :]
        else:
            im = im[start_h:end_h, start_w:end_w]
        if (self.is_train) and (np.random.randint(2) == 0):
            if self.is_color:
                im = im[:, ::-1, :]
            else:
                im = im[:, ::-1]
        return im

    def transform(self, im):
90 91
        im = self.resize(im, self.min_size)
        im = self.crop_and_flip(im)
92 93 94 95 96 97 98 99 100 101 102 103 104 105
        # transpose, swap channel, sub mean
        im = im.astype('float32')
        ImageTransformer.transformer(self, im)
        return im

    def load_image_from_string(self, data):
        flag = cv2.CV_LOAD_IMAGE_COLOR if self.is_color else cv2.CV_LOAD_IMAGE_GRAYSCALE
        im = cv2.imdecode(np.fromstring(data, np.uint8), flag)
        return im

    def transform_from_string(self, data):
        im = self.load_image_from_string(data)
        return self.transform(im)

106 107 108 109 110 111 112 113 114 115
    def load_image_from_file(self, file):
        flag = cv2.CV_LOAD_IMAGE_COLOR if self.is_color else cv2.CV_LOAD_IMAGE_GRAYSCALE
        im = cv2.imread(file, flag)
        return im

    def transform_from_file(self, file):
        im = self.load_image_from_file(file)
        return self.transform(im)


D
dangqingqing 已提交
116
class PILTransformer(ImageTransformer):
117
    """
D
dangqingqing 已提交
118
    PILTransformer used PIL to process image.
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    """

    def __init__(
            self,
            min_size=None,
            crop_size=None,
            transpose=(2, 0, 1),  # transpose to C * H * W
            channel_swap=None,
            mean=None,
            is_train=True,
            is_color=True):
        ImageTransformer.__init__(self, transpose, channel_swap, mean, is_color)
        self.min_size = min_size
        self.crop_size = crop_size
        self.is_train = is_train

    def resize(self, im, min_size):
        row, col = im.size[:2]
        new_row, new_col = min_size, min_size
        if row > col:
            new_row = min_size * row / col
        else:
            new_col = min_size * col / row
        im = im.resize((new_row, new_col), Image.ANTIALIAS)
        return im
144

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    def crop_and_flip(self, im):
        """
        Return cropped image.
        The size of the cropped image is inner_size * inner_size.
        """
        row, col = im.size[:2]
        start_h, start_w = 0, 0
        if self.is_train:
            start_h = np.random.randint(0, row - self.crop_size + 1)
            start_w = np.random.randint(0, col - self.crop_size + 1)
        else:
            start_h = (row - self.crop_size) / 2
            start_w = (col - self.crop_size) / 2
        end_h, end_w = start_h + self.crop_size, start_w + self.crop_size
        im = im.crop((start_h, start_w, end_h, end_w))
        if (self.is_train) and (np.random.randint(2) == 0):
            im = im.transpose(Image.FLIP_LEFT_RIGHT)
        return im

    def transform(self, im):
        im = self.resize(im, self.min_size)
        im = self.crop_and_flip(im)
        im = np.array(im, dtype=np.float32)  # convert to numpy.array
        # transpose, swap channel, sub mean
        ImageTransformer.transformer(self, im)
        return im

    def load_image_from_string(self, data):
        im = Image.open(StringIO(data))
        return im

    def transform_from_string(self, data):
        im = self.load_image_from_string(data)
        return self.transform(im)

    def load_image_from_file(self, file):
        im = Image.open(file)
        return im

    def transform_from_file(self, file):
        im = self.load_image_from_file(file)
        return self.transform(im)


D
dangqingqing 已提交
189 190 191 192 193
def job(is_img_string, transformer, (data, label)):
    if is_img_string:
        return transformer.transform_from_string(data), label
    else:
        return transformer.transform_from_file(data), label
194 195 196


class MultiProcessImageTransformer(object):
197 198
    def __init__(self,
                 procnum=10,
199
                 resize_size=None,
200
                 crop_size=None,
201
                 transpose=(2, 0, 1),
202 203 204
                 channel_swap=None,
                 mean=None,
                 is_train=True,
205 206
                 is_color=True,
                 is_img_string=True):
207
        """
208 209 210 211
        Processing image with multi-process. If it is used in PyDataProvider,
        the simple usage for CNN is as follows:
       
        .. code-block:: python
212

213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
            def hool(settings, is_train,  **kwargs):
                settings.is_train = is_train
                settings.mean_value = np.array([103.939,116.779,123.68], dtype=np.float32)
                settings.input_types = [
                    dense_vector(3 * 224 * 224),
                    integer_value(1)]
                settings.transformer = MultiProcessImageTransformer(
                    procnum=10,
                    resize_size=256,
                    crop_size=224,
                    transpose=(2, 0, 1),
                    mean=settings.mean_values,
                    is_train=settings.is_train)


            @provider(init_hook=hook, pool_size=20480)
            def process(settings, file_list):
                with open(file_list, 'r') as fdata:
                    for line in fdata: 
                        data_dic = np.load(line.strip()) # load the data batch pickled by Pickle.
                        data = data_dic['data']
                        labels = data_dic['label']
                        labels = np.array(labels, dtype=np.float32)
                        for im, lab in settings.dp.run(data, labels):
                            yield [im.astype('float32'), int(lab)]

        :param procnum: processor number.
        :type procnum: int
        :param resize_size: the shorter edge size of image after resizing.
        :type resize_size: int
        :param crop_size: the croping size.
        :type crop_size: int
        :param transpose: the transpose order, Paddle only allow C * H * W order.
        :type transpose: tuple or list
        :param channel_swap: the channel swap order, RGB or BRG.
        :type channel_swap: tuple or list
        :param mean: the mean values of image, per-channel mean or element-wise mean.
        :type mean: array, The dimension is 1 for per-channel mean.
                    The dimension is 3 for element-wise mean. 
        :param is_train: training peroid or testing peroid.
        :type is_train: bool.
        :param is_color: the image is color or gray. 
        :type is_color: bool.
        :param is_img_string: The input can be the file name of image or image string.
        :type is_img_string: bool.
258
        """
259

D
dangqingqing 已提交
260
        self.procnum = procnum
261 262 263
        self.pool = multiprocessing.Pool(procnum)
        self.is_img_string = is_img_string
        if cv2 is not None:
D
dangqingqing 已提交
264
            self.transformer = CvTransformer(resize_size, crop_size, transpose,
265 266 267
                                             channel_swap, mean, is_train,
                                             is_color)
        else:
D
dangqingqing 已提交
268 269 270
            self.transformer = PILTransformer(resize_size, crop_size, transpose,
                                              channel_swap, mean, is_train,
                                              is_color)
271

D
dangqingqing 已提交
272 273 274 275
    def run(self, data, label):
        fun = functools.partial(job, self.is_img_string, self.transformer)
        return self.pool.imap_unordered(
            fun, itertools.izip(data, label), chunksize=100 * self.procnum)