# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. import os, sys import numpy as np from PIL import Image from cStringIO import StringIO import multiprocessing import functools import itertools from paddle.utils.image_util import * from paddle.trainer.config_parser import logger try: import cv2 except ImportError: logger.warning("OpenCV2 is not installed, using PIL to process") cv2 = None __all__ = ["CvTransformer", "PILTransformer", "MultiProcessImageTransformer"] class CvTransformer(ImageTransformer): """ CvTransformer used python-opencv to process image. """ def __init__( self, min_size=None, crop_size=None, transpose=(2, 0, 1), # transpose to C * H * W channel_swap=None, mean=None, is_train=True, is_color=True): ImageTransformer.__init__(self, transpose, channel_swap, mean, is_color) self.min_size = min_size self.crop_size = crop_size self.is_train = is_train def resize(self, im, min_size): row, col = im.shape[:2] new_row, new_col = min_size, min_size if row > col: new_row = min_size * row / col else: new_col = min_size * col / row im = cv2.resize(im, (new_row, new_col), interpolation=cv2.INTER_CUBIC) return im def crop_and_flip(self, im): """ Return cropped image. The size of the cropped image is inner_size * inner_size. im: (H x W x K) ndarrays """ row, col = im.shape[:2] start_h, start_w = 0, 0 if self.is_train: start_h = np.random.randint(0, row - self.crop_size + 1) start_w = np.random.randint(0, col - self.crop_size + 1) else: start_h = (row - self.crop_size) / 2 start_w = (col - self.crop_size) / 2 end_h, end_w = start_h + self.crop_size, start_w + self.crop_size if self.is_color: im = im[start_h:end_h, start_w:end_w, :] else: im = im[start_h:end_h, start_w:end_w] if (self.is_train) and (np.random.randint(2) == 0): if self.is_color: im = im[:, ::-1, :] else: im = im[:, ::-1] return im def transform(self, im): im = self.resize(im, self.min_size) im = self.crop_and_flip(im) # transpose, swap channel, sub mean im = im.astype('float32') ImageTransformer.transformer(self, im) return im def load_image_from_string(self, data): flag = cv2.CV_LOAD_IMAGE_COLOR if self.is_color else cv2.CV_LOAD_IMAGE_GRAYSCALE im = cv2.imdecode(np.fromstring(data, np.uint8), flag) return im def transform_from_string(self, data): im = self.load_image_from_string(data) return self.transform(im) def load_image_from_file(self, file): flag = cv2.CV_LOAD_IMAGE_COLOR if self.is_color else cv2.CV_LOAD_IMAGE_GRAYSCALE im = cv2.imread(file, flag) return im def transform_from_file(self, file): im = self.load_image_from_file(file) return self.transform(im) class PILTransformer(ImageTransformer): """ PILTransformer used PIL to process image. """ def __init__( self, min_size=None, crop_size=None, transpose=(2, 0, 1), # transpose to C * H * W channel_swap=None, mean=None, is_train=True, is_color=True): ImageTransformer.__init__(self, transpose, channel_swap, mean, is_color) self.min_size = min_size self.crop_size = crop_size self.is_train = is_train def resize(self, im, min_size): row, col = im.size[:2] new_row, new_col = min_size, min_size if row > col: new_row = min_size * row / col else: new_col = min_size * col / row im = im.resize((new_row, new_col), Image.ANTIALIAS) return im def crop_and_flip(self, im): """ Return cropped image. The size of the cropped image is inner_size * inner_size. """ row, col = im.size[:2] start_h, start_w = 0, 0 if self.is_train: start_h = np.random.randint(0, row - self.crop_size + 1) start_w = np.random.randint(0, col - self.crop_size + 1) else: start_h = (row - self.crop_size) / 2 start_w = (col - self.crop_size) / 2 end_h, end_w = start_h + self.crop_size, start_w + self.crop_size im = im.crop((start_h, start_w, end_h, end_w)) if (self.is_train) and (np.random.randint(2) == 0): im = im.transpose(Image.FLIP_LEFT_RIGHT) return im def transform(self, im): im = self.resize(im, self.min_size) im = self.crop_and_flip(im) im = np.array(im, dtype=np.float32) # convert to numpy.array # transpose, swap channel, sub mean ImageTransformer.transformer(self, im) return im def load_image_from_string(self, data): im = Image.open(StringIO(data)) return im def transform_from_string(self, data): im = self.load_image_from_string(data) return self.transform(im) def load_image_from_file(self, file): im = Image.open(file) return im def transform_from_file(self, file): im = self.load_image_from_file(file) return self.transform(im) def job(is_img_string, transformer, (data, label)): if is_img_string: return transformer.transform_from_string(data), label else: return transformer.transform_from_file(data), label class MultiProcessImageTransformer(object): def __init__(self, procnum=10, resize_size=None, crop_size=None, transpose=(2, 0, 1), channel_swap=None, mean=None, is_train=True, is_color=True, is_img_string=True): """ Processing image with multi-process. If it is used in PyDataProvider, the simple usage for CNN is as follows: .. code-block:: python def hool(settings, is_train, **kwargs): settings.is_train = is_train settings.mean_value = np.array([103.939,116.779,123.68], dtype=np.float32) settings.input_types = [ dense_vector(3 * 224 * 224), integer_value(1)] settings.transformer = MultiProcessImageTransformer( procnum=10, resize_size=256, crop_size=224, transpose=(2, 0, 1), mean=settings.mean_values, is_train=settings.is_train) @provider(init_hook=hook, pool_size=20480) def process(settings, file_list): with open(file_list, 'r') as fdata: for line in fdata: data_dic = np.load(line.strip()) # load the data batch pickled by Pickle. data = data_dic['data'] labels = data_dic['label'] labels = np.array(labels, dtype=np.float32) for im, lab in settings.dp.run(data, labels): yield [im.astype('float32'), int(lab)] :param procnum: processor number. :type procnum: int :param resize_size: the shorter edge size of image after resizing. :type resize_size: int :param crop_size: the croping size. :type crop_size: int :param transpose: the transpose order, Paddle only allow C * H * W order. :type transpose: tuple or list :param channel_swap: the channel swap order, RGB or BRG. :type channel_swap: tuple or list :param mean: the mean values of image, per-channel mean or element-wise mean. :type mean: array, The dimension is 1 for per-channel mean. The dimension is 3 for element-wise mean. :param is_train: training peroid or testing peroid. :type is_train: bool. :param is_color: the image is color or gray. :type is_color: bool. :param is_img_string: The input can be the file name of image or image string. :type is_img_string: bool. """ self.procnum = procnum self.pool = multiprocessing.Pool(procnum) self.is_img_string = is_img_string if cv2 is not None: self.transformer = CvTransformer(resize_size, crop_size, transpose, channel_swap, mean, is_train, is_color) else: self.transformer = PILTransformer(resize_size, crop_size, transpose, channel_swap, mean, is_train, is_color) def run(self, data, label): fun = functools.partial(job, self.is_img_string, self.transformer) return self.pool.imap_unordered( fun, itertools.izip(data, label), chunksize=100 * self.procnum)